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Abstract-Two models have been developed for predicting free convection low Reynolds number turbulent 
flows. The models also apply to mixed convection flows. The first, a k-s model, is based on the notion of eddy 
diffusivities for momentum and heat. The second, an algebraic stress model, is based on approximations 
derived for the anisotropic turbulent fluxes by a suitable truncation of their conservation equations. Both 
formulations apply to variable property flows with high overheat ratios, AT/T,, and have not required the 
definition of new model constants. No attempt has been made to modify previously established values of the 
constants in order to improve agreement between measurements and predictions of the flow investigated. Such 
an optimization must await the availability of more detailed and reliable experimental measurements of 
turbulence-related quantities. 

Fully elliptic forms of the differential transport equations, subject to appropriately specified boundary 
conditions, have been solved numerically for two flow configurations. Both are two-dimensional. The first 
corresponds to free convection along a heated vertical flat plate and is the subject of Part I of this study. The 
second corresponds to free and mixed convection from a heated cavity of arbitrary rectangular cross-section 
and variable o~entation, and is the subject of Part II. 

For the case of the vertical plate, a comparison between measurements and predictions shows that both 
models yield fairly accurate results for the mean flow and heat transfer. Near-wall velocity and temperature 
distributions predicted by both models reveal the l/3 power-law dependence derived by George and Capp 
[Int. J. Heat Mass Transfer 22, 813-826 (1979)] and confirmed for temperature by Siebers et al [J. Heat 
Trunsfer 107, 124-132 (1985)]. Values of the constants in the power-law relations for velocity and temperature 
have been obtained here numerically for high and low AT/T,. Predictions of the anisotropic Reynolds stress 
and turbulent heat flux distributions are in good qualitative agreement with the measurements ofMiyamoto et 
al. [hoc. 7th Inl. Heat Transfer Conference, Vol. 2, pp. 3233328 (1982)]. In particular, regions of negative 
buoyant and shear production of turbulent kinetic energy observed experimentally are clearly revealed by the 

calculations. 

1. INTRODUCTION 

1.1. The ~oblem of interest and objectives ofthis study 
ASIDE from its intrinsic vaiue, the accurate modeling of 
turbuIent free convection from a heated, flat plate is 
considered to be a logical first step towards the 
numerical simulation of more complex, buoyancy- 
affected, turbulent flows. However, in reviewing the 
literature it becomes apparent that even the case of 
steady, two-dimensional (in the mean) free convection 
along a vertical flat plate has not yet been satisfactorily 
resolved. While there exist numerous experimental 
measurements and theoretical calculations of mean 
flow and heat transfer quantities (such as velocity, 
temperature and the heat transfer coefficient), and there 
are empirically and theoretically derived correlations 
availabIe to predict the heat transfer to within 
experimental uncertainty, no calculation to date has 
been directed towards resolving the mean flow and the 
anisotropic turbulence characteristics simultaneously. 
Furthermore, all calculation approaches so far have 
made use of the Boussinesq approximation, which 
limits their applicability to relatively small values ofthe 
overheat ratio, (T, - T,)/T,. 

The objective of the present study has been to 
develop and test two closure approximations which will 
correctly predict the mean flow and heat transfer of a 

variable property fluid in turbulent free convection 
along a heated, vertical, flat plate. The models afso 
apply to mixed convection flows. In one case closure is 
based on the notion of isotropic eddy diffusion 
coefficients for the turbulent transport of momentum 
and heat, while in the other special attention is paid to 
simulating the anisotropic characteristics of the 
turbulent fluxes. Both models account for low 
Reynolds number turbulent flow conditions near walls, 
where wall-damping takes place, and far away from 
them where, in the absence of shear production, 
turbulent fluctuations decay to small values. 

A comparison between the quantities predicted by 
both mode& show that they are equally capable of 
yielding fairly accurate results for the mean flow and 
heat transfer. As a result, the simpler model, that based 
on eddy diffusion coefficients, has also been applied to 
simulate free and mixed convection in strongly heated 
cavities. In this paper, Part I, we communicate the work 
performed for the flat plate configuration. In a second 
paper, Part II, we provide an account of the work 
performed for the cavity configuration. 

1.2. Earlier work 

(i) Free convection along a vertical, pat plate. A 
literature review of convective heat transfer in heated 
cavities, enclosures and along flat plates has been given 
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specific heat at constant pressure 
turbulence quantity related to E through 

v, (~U~~Xj~~U~/~Xj) = E/V 
gravitational constant 
component i of the gravitation vector 
buoyancy production of turbulent 

kinetic energy, p’uigi 
buoyancy production of u$> (defined in 
text) 
local Grashof number, g/?_ATx3/vi 
modified local Grashof number, 

SP,4J4/?uJ& 
heat transfer coefficient 
turbulent kinetic energy, 442 
local Nusselt number, hx/y, 
pressure 
shear production of turbulent kinetic 

energy, - pu$; XJax, 

shear production of ~(de~ned in text) 

shear production of u:T’ (defined in text) 
Prandtl number, j&,/y 
turbulent Prandtl number 
wall heat flux 
turbulent Reynolds number, pk’/pz 
velocity-temperature correlation 

coefficient, u’T’/J(u’~)J(T’~) 
temperature 
film temperature, (I; + T,)/2 
wall temperature 
ambient temperature (293 K) 
time 
longitudinal (streamwise} velocity 
component 
velocity component in i-direction 
maximum velocity along a flat plate 
characteristic velocity along a flat plate, .-___ 
2&LATx 
inner region velocity scale, 

(s8,ATv,/P#‘3 
dimensionless velocity, iifu, 
characteristic shear stress velocity, 

Jz 
longitudinal turbulent heat Aux 

turbulent shear stress 
transverse velocity component 
(perpendicular to flat plate) 

transverse turbulent heat flux 
spanwise velocity component (parallel to 
flat plate) 

xi spatial coordinate in i-direction 
x longitudinal coordinate; distance from 

the leading edge of a flat plate 

Y transverse coordinate ; distance 
perpendicular to the flat plate 

Y+ dimensionless transverse coordinate, 

Y/Y, 
Y, transverse length scale, v/u, 

Greek symbols 
coefficient of volume expansion, lf T, 
thermal conductivity 
Kronecker delta 
outer region length scale, 

s 
a @/t&J dy 

0 

characteristic temperature difference, 

G-T, 
isotropic dissipation of turbulent kinetic 
energy, VD 
dimensionless transverse coordinate, 

~Nudx 
inner region length scale, 

Cb,/~r)2/(sS,~~l”3 
modified inner region length scale, 

rl;rl~,/rJo(/T~)~~‘~ 
nondimensional temperature, 

(T- T,)/(T,-- T,) 
molecular viscosity 
turbulent viscosity 
molecular kinematic viscosity 

pressure redistribution of @ 

pressure redist~bution of ufT 
density 
Prandtl number for k 
Prandtl number for E 
wall shear stress. 

Superscripts 
fluctuating quantities 
mean quantities. 

Subscripts 

i,i spatial coordinate indices 
m maximum value 
t turbulent quantity 

F 
wall condition 
film temperature 

co ambient condition. 
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in Humphrey et al. [l]. A summary is provided here of 
those investigations most relevant to the present work. 

Among the early experimental works on turbulent 
free conviction flow along vertical, flat plates are the 
contributions by Warner and Arpaci [2], Lock and 
Trotter [3], Goldstein and Eckert [4] and 
Cheesewright [5] for low overheat ratio. More recent 
investigations using the laser-Doppler velocimeter 
(LDV) technique have been conducted by 
Cheesewright and Ierokipiotis [6] for AT/T, - 0.2, by 
Caimie and Harrison [7] for 0.26 < AT/T, < 1.28 
and by Miyamoto et al. [8] for AT/T, - 0.12. By 
measuring temperature and velocity simultaneously at 
essentially the same location, Miyamoto et al. [I?] 
obtained turbulent stress and heat flux distributions in 
addition to mean flow quantities. Cheesewright and 
Doan [9] have performed a fairly detailed study of 
space-time correlations using the hot wire technique. 
Siebers et al. [lo] have measured distributions of the 
heat transfer coefficient and of temperature over the 
Grashof number range 1.7 x 10” < Gr, < 1.86 x 10” 
with 0.14 < AT/T, c 1.73. A major result from their 
work was the following correlation for the local Nusseit 
number : 

components in high Reynolds number (locally 
isotropic) equilibrium shear flows. Launder [25] 
suggested a way for including gravitational effects in the 
pressure-correlation terms affecting the balance of the 
turbulent fluxes. Gibson and Launder [26] extended 
this work by accounting for the modification of the 
fluctuating pressure field by the presence of a wall. 
Applications of these concepts are to be found in the 
numerical studies of Gibson and Launder [27] and 
Ljuboja and Rodi [28]. 

In high Reynolds number turbulence model 
formulations it is possible to use logarithmic law-of- 
the-wall relations for velocity and temperature to patch 
the region of flow lying between a wall and the first 
calculation location adjacent to the wall. This is not 
possible in the present flow where low Reynolds 
number conditions arise both near the wall and far 
away from it. The formulation to be developed must 
account for this effect as well as arbitrary wall 
orientation and the variation of physical properties 
with temperature. 

Nu, = 0.098 Grij3 -$ 
( > 

-“14. 
00 

(1) 

The last term in equation (1) accounts for the physical 
property dependence of air on temperature. 

Theoretical analyses using integral formulations 
have been performed by, among others, Eckert and 
Jackson [ll], Bayley [12], Oosthuizen [13] and Kato 
et ai. [14]. Numerical predictions using isotropic eddy 
diffusion turbulence models have been made by Mason 
and Seban [15], Cecebi and Khattab [16] and Siebers 
[17]. Predictions based on the low Reynolds number 
k-e turbulence model of Jones and Launder [ 181 have 
been made by Plumb and Kennedy [ 19 J and Lin and 
Churchill [20]. The above theoretical analyses and 
numerical procedures have yidded results in good 
agreement with measurements of heat transfer. The 
numerical approaches also give correct distributions of 
mean velocity and temperature but, due to the 
assumption of an isotropic eddy diffusion coefficient, 
cannot predict the detailed anisotropic characteristics 
of the turbulent flow. 

Velocity and temperature power-law relations have 
been derived by George and Capp [29] for the buoyant 
sublayer region of turbulent free convection along a 
heated, vertical, flat plate at low AT/T,. Siebers et al. 
[lo] verified the l/3 power dependence for temperature 
with distance from the wall, but they found it necessary 
to modify the inner region length scale proposed in ref. 
[29] by including a dimensionl~s wall temperature 
factor. This empirical adjustment is needed to account 
for the temperature dependence of physical properties 
at high overheat ratios. 

(ii) Modeling turbulence wits buoy~t eficts. 
Theoretical formulations for simulating high Reynolds 
number turbulent flows subject to gravitational forces 
have been developed for conditions where the 
Boussinesq approximation applies ; see, for example, 
the reviews given by Launder [21], Hirata et al. [22] 
and Hosain and Rodi [23]. For an elegant discussion of 
the Boussinesq approximation the reader is referred to 
Gray and Giorgini [24]. 

ForlowAT/T, it ispossible toestimatevaluesfor the 
constants in the power-law relations of ref. [29] from 
existing measurements of temperature and recent 
detailed measurements of velocity. However, cor- 
responding values of the constants for high AT/T, can 
only be obtained for temperature, from the data of ref. 
[lo]. Given that the relations derived [29] apply only 
to vertical plates, and given the relatively large 
un~rtainties associated with determining the power- 
law constants, we have eschewed a modeling approach 
which relies on the availability of some general form of a 
wall relation. Instead, we have sought to predict the 
flow directly, by using a generalized model formulation 
which encompasses both high and low turbulence 
Reynolds number regions of the flow for arbitrary 
values of A~/T~ and wall orientation. Following this 
approach it is possible to compute detailed variations 
for temperature and velocity in the buoyant sublayer, 
from which (it will be shown) corresponding power-law 
relations can be derived. 

2. NUMERICAL PROCEDURE 

2.1. Mean transport equations and auxiliary relations 
The present work builds upon and extends the The starting point for the turbulence modeling effort 

investigations by Launder [ZS] and Gibson and is the system of transport equations given in LeQuere et 
Launder [26]. These authors have derived algebraic al. [30] for variable physical property flows. The fluid of 
relations for the turbulent stress and heat flux interest here, air, is presumed to be a perfect gas with 
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Pr = 0.71. Conservation equations for mass, momen- 2.2. two-equation model (KEM) 
turn and energy, and a mean equation of state, are ob- Maintaining an analogy with laminar flow, the 
tained by Reynolds decomposition of instantaneous 
quantities in the equations into the sum of the 

turbulent fluxes &uJi and @iT’ are assumed ta obey 

mean and fluctuating parts and averaging the result 
gradient type relations as follows, 

as shown in Appendix A of Humphrey et aE. [31]. 
The result, ignoring flu~uations of physical properties (Sl 

except density, is : 

g+&tij+p’u;)=o (2) 
(9) 

The turbulence viscosity, /I~, is assumed to be 
proportional to a turbulence- velocity scale and a 
turbulence length scale. In the limit of high Reynolds 
number, Jones and Launder [18] propose 

(3) 
p, = C,$. 

& (10) 

In this expression C, is a proportion~ity const~t and E 
is defined as 

j?‘i‘+p’T’ = p,T,. 

An additional pair of useful relations can be obtained 
from the equation of state. They are : 

-- 
p’u;F+ pu:T’ = 0 (6) 

-- __ 
p’T’T+pT” = 0. (7) 

Through these auxiliary relations p’ut and p’T’ can be 
calculated using the models employed to approxi- - - 
mate pu:T and pT’*, respectively. 

To close the above system of equations, assumptions ~- 
concerning the mean flow dependence of pu$;, pu;T’ 

and pT” must be made, or expressions for these 
quantities must be obtained from their respective 
transport equations. The former approach introduces 
the concept ofa turbulent viscosity which is determined 
by k, the kinetic energy ofturbulence and E, its rate of 
isotropic dissipation. This model is commonly referred 
to as the k-c model (KEM). The latter approach, in the 
case of 2-D flow, involves six partial differential 
equations for the turbulence correlations. Truncation 
of these transport equations, obtained by neglecting 
convection and diffusion terms, yields a system of 

Exact transport equations for k and Bt can be 
derived from the momentum equation as shown in ref. 
[31]. Simplified forms of the equations, obtained by 
neglecting third and higher order correlations 
involving p’, correlations involving auyaxi and ap/dxj, 
and variable viscosity property terms, are the basis for 
the model presented in detail in ref. [31]. 

In the model, a gradient assumption is used to 
approximate the diffusion of k and E [18,32J, with the 
pressure contribution to turbulent diffusion assumed to 
be negligibly small as argued in ref. [33]. The 
generation of D by stretching of vortex filaments and its 
destruction through viscous reduction of velocity 
gradients are modeled collectively as in ref. [34]. The 
buoyancy term in the I) equation is approximated as 

I I 

22 2 gi = ; c,,p’u;g,. 
J J 

(12) 

When using the Boussinesq approximation, the RHS of 
equation (12) yields an expression commonly used in 
buoyant flows ; see, for example, the review by Kumar 
[35]. The final forms of the modeled equations are, 

algebraic equations relating the turbulent fluxes to a a 
known or calculable flow quantities ; hence the 
terminology, algebraic stress model (ASM). 

%(%I + z(Pcjk) = ax_ 
I aJ[(p+ ;)$I 

From here on, third and higher order correlations 
involving p’ are neglected. This is done principally 
because at the present time there is insufficient 
information for developing good approximations for 
such terms. However, the omission of these terms is not 
expected to alter si~ificantly the mean flow results. 
Theeffect oftheir omission on thecalculated turbulence TFor in~mpressible turbulent flow, the D equation 

quantities is more difficult to ascertain but is also 
automatically implies an equation for E. However, with v 
variable, it is more convenient to solve theD equation first and 

expected to be small. then multiply the result by Y to obtain E. 
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where : G and P are the buoyancy and shear production 
of turbulent kinetic energy, respectively (see 
Nomenclature) ; uk and cr, are the Prandtl numbers fork 
and E which, like Cei, C,, and CE3, are model constants. 

In low turbulence flow, due, for example, to the 
presence of a wall or damping of the turbulent 
fluctuations by stable stratification, it is necessary to 
modify equation (14). The standard forced flow 
modi~~tion developed by Jones and Launder [18], 
subsequently used to predict turbulent free convection 
from a heated, vertical plate by Plumb and Kennedy 
[ 191 and Lin and Churchill [20], requires the inclusion 
of an extraneous term, -2v(8k’/2/t?y)2, in the turbulent 
kineticenergyequation~order to beable tosets = Oat 
the wall. In this study such an empirical approach is 
avoided because E is not zero at the wall and, although 
-2v(~k1’2/~y)2 is an adequate expression for E in the 
near-wall region, it may be inappropriate in the bulk of 
the flow. Instead, E at the wall is obtained by considering 
the balance of k in the viscous sublayer. In this region 
the k-equation is simply an expression equating viscous 
diffusion to dissipation of k 

(15) 

The proof of equation (15) can be established by 
expanding ~u~t~ting quantities in (13) in terms of 
Taylor series expansions in y, the distance per- 
pendicular to the wall. Using aTaylor series expansion 
in y for k 1/2, it also follows that 

(16) 

with k at the wall taken as zero. The value of D at the 
wall is readily obtained by substituting the above result 
into equation (15) 

ak’lz 2 

D=2 ~ ( > ay .i (17) 

There is ample evidence supporting the above 
arguments. First, k N y2 as y -+ 0 has been observed 
experimentally by Schubauer [36] ; second, molecular 
diffusion of k balancing dissipation as y --t 0 has been 
observed to be a correct description of the turbulence 
energy budget by, for example, Laufer [37l; and third, E 
-+ constant as y --t 0 is physically correct (see [38]). 

Jones and Launder [ 181 also added an arbitrary term 
to the D-equation to obtain better agreement with 
experimental results of the turbulent kinetic energy in 
forced flow. Such a term is removed here because it 
cannot be justified in purely buoyant flow. This term 

was also dropped by Plumb and Kennedy Cl93 but was 
retained by Lin and Churchill [20]. 

In agreement with Jones and Launder [ 1 S] and Lam 
and Bremhorst [39], in this study C, and C,, are made 
functions of Re, the turbulence Reynolds number, in 
order to account for low Reynolds number effects on 
the flow. The variation of C, is determined by requiring 
that the turbulence viscosity vary according to the Van 
Driest formulation in the near-wall region. The 
variation of C,, is chosen so that the model will predict 
correctly the decay of isotropic grid turbulence for both 
high and low turbulence intensities. The modified 
parameters are, 

C, = C,, exp [ -2.5/(1 +ReJ50)] (18a) 

C,, = C,,,[l-0.3 exp (-Re,Z)]f#eJ (18b) 

where C,, and CEZa are constants optimized for high 
Reynolds number flows. In equation (18b) fi = 
1 -exp (- Ref) is a wall-damping factor applied 
between y+ = 0 and 5 only. This is in order to comply 
with the requirements of a low Reynolds number 
formulation while simult~eously satisfying the con- 
dition that the third term on the RHS of equation 
(14) remain finite at the wall. Equation (18b) represents 
a compromise between the proposals in refs. [38] and 

cw. 
In summary, the general Reynolds number form of 

the B-equation proposed here is equation (14) with C&s 
CeZ and lr, given by (Isa), (18b) and (lo), respectively. 
Since there are no low Reynolds number modifications 
for the k equation, equation (13) is employed for both 
high and low Re, flows. The boundary conditions for k 
and D at the wall, consistent with these equations, are 

k, = 0 
(19) 

Finally, a relation for 7”’ is also required in order to 

obtain p’T’ from equation (7). The exact transport 

equation for T’2 is given in ref. [31]. Following Gibson 
and Launder [26], the assumption of a local 
equilibrium flow simplifies that equation to : 

where the second equality, involving the model 
constant R, has been proposed by Launder [25]. 
Combining equations (7) and (20) yields the following 

relation for p’T’ : 

p = 2Rk !?E”r 
VD T j axj. 

Strictly speaking, equation (21) is only valid for high 
Re, flows. It is used here since a satisfactory low Re, 

approximation for the transport of T’2 does not yet 
exist. (Although we note that Plumb and Kennedy [ 191 

have modeled the ‘Y2-equation for flows where the 
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Boussinesq approximation applies, in a way similar to 
how Jones and Launder [ 181 modeled the k-equation. 
However, in addition to introducing an extra term in 

the T”-equation, their model required the definition 
and optimization of three new constants.) 

Equations (8X10), (13), (14) and (21) together with 
the mean transport equations (2)<6) constitute an 
isotropic eddy viscosity model for calculating free (or 
mixed) convection turbulent flows. 

2.3. Algebraic stress model (ASM) 
Equations governing the transport of the Reynolds 

stresses uiui and heat fluxes u:T’ have been derived [3 11. 

Simplified forms of the equations, obtained by 
neglecting third and higher order correlations 
involving p’, 1%3ax, and the viscosity gradient terms, 
are the basis for the model used here. Apart from the 
production terms which are known exactly, the terms 

affecting the balances of u;ui and u;T’ involve unknown 
correlations of fluctuating quantities. The modeling of 
these terms follows from the work of Launder and his 
colleagues [25-271 and is carefully outlined in ref. [31]. 

In modeling the pressure redistribution of u:u! and 

uIT’, contributions due to fluctuating velocities and 
temperature (and their interactions), the mean strain 
(and its interactions with fluctuating velocities and 
temperature), buoyancy and wall damping effects are 
all considered. To render algebraic the complex system 
of differential equations for the turbulent fluxes, the 
assumption of a local equilibrium flow is invoked [40]. 
Although this assumption is incorrect for a low 
Reynolds number flow or in the proximity of a solid 
wall, KEM calculations show that, except in a viscous 
region very close to the wall, the turbulence Reynolds 
number is of the order of lo2 to 103. Given this rapid 
tendency of the flow to acquire a high turbulence 
Reynolds number, the applicability (or not) to free 
convection of an ASM formulation premised on the 
local equilibrium assumption is perhaps better judged 
by the level of agreement found between measurements 
and predictions. Thus, assuming local equilibrium, the 

algebraic expressions resulting for uiuj and u;T’ are, 

0 =P,+G,,+rr, -$D (l-&)6,+@ 
[ 1 (22) 

_ o= -pq$g +PiT+p'Tlgi+aiT. (23) 
1 

In the above expressions, f, = l/( 1 + ReJlO) is a low 
Reynolds number correction to the stress dissipation ; 
nij and rciT denote the pressure redistribution terms; 
and the following production terms due to shear and 
buoyant forces are defined 

p,, = _p 
1, ( zau’+zalS, 

J kax, 1 li ax, > 

p. =-&+E! rT ’ axj 

(24) 

(25) 

Gij = p’t&j+ p’U;gi. (26) 

The rr.. and niT terms are complicated functions of k, D, -v 
t&u;, u;T’, P, G, Pi,, Gij and Pi,. They involve the 
specification of various model constants and of a 
function, f(l/y), to reduce the effect of the wall pressure 
corrections with increasing distance from the wall. The 
forms of these terms and of equations (22) and (23) for 
the case of flow along a heated, vertical, flat plate are 
given in detail in ref. [31]. 

Since k and D appear explicitly in the ASM 

formulation, they must also be calculated. Although k 

could be approximated from ASM calculations of r&f, 
in practice it is more convenient? to calculate k directly 
from its own transport equation and to determine two 
of the normal stresses via the ASM formulation. The 
third normal stress is evaluated as 

As before, the turbulent diffusion of k and D by pressure 
fluctuations are neglected but the triple velocity 
correlations are modeled according to refs. [33] and 
[41] : 

$-( -0s) = -$(C&+) (28) 

a _ , au; au; - 
axj - p”jax, ax, (29) 

In flows that are two-dimensional in the mean, 

equations (20), (22) and (23) represent a system of six ---_- 
algebraic equations constaining u12, v12, t/v’, u’T’, v’T 

and T’= as unknowns. Together with the equations for 

k, D, p’T’ (of the previous section) and the mean 
transport equations, the system is closed. In this study 

w’~ is evaluated by subtracting ASM-calculated values 

of u” and ti2 from values of k calculated from its own 
transport equation. 

Values for the required model constants were taken 

from refs. [25], [28] and [30]. The values used are: 

R C; c, czl C~20 c,, Pr, c,, Bk ge 

0.8 0.24 0.15 1.44 1.92 1.44 0.9 0.09 1 1.3. 

(30) 

In addition, constants which appear in the model for the 
pressure redistribution terms must be specified. They 
are listed in ref. [31] where it is explained that three of 
the wall correction terms are nullified by the zero values 
of the constants. This state of affairs is due to a lack of 
appropriate experimental data from which to derive 
accurate values for these three constants. Although part 
of the inaccuracies in the present study may be due to 
the neglect of these terms, we have deliberately avoided 

t It is also physically more realistic to determine k from a 
transport equation which retains the contributions of 
convection and diffusion to its overall balance. 
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attempting to obtain new estimates of any of the 
constants by seeking an improved agreement between 
measurements and predictions. Such an exercise must 
await the availability of an accurately determined and 
sufficiently extensive data base, 

2.4. Bo~~ary co~itio~s and related c5~iderution~ 
The boundary conditions for the heated, vertical, flat 

plate flow are shown in Fig. 1. Since the governing 
equations solved here are fully elliptic, boundary 
conditions are needed along the solid wall and the three 
‘free’ boundaries of the calculation domain. 

There is no need to specify boundary conditions for 

the temperature fluctuations, T’z, since in both the 
KEM and ASM models this variable is evaluated 
algebraically. For the same reason, boundary 
conditions are not required in the ASM formulation for 
the turbulent stresses and heat fIuxes. 

(i) Z%e solid wall. In forced convection, law-of-the- 
wall relations for velocity and temperature are 
frequently used to bridge the gap between the wall and 
the inertial region in the flow. This empirical practice 
saves considerable computing time and storage, but its 
extension to natural and mixed convection flows is 

questionable since, in general, it is not known what are 
the correct relations to apply. In principle, one couid 
use power-law relations for velocity and temperature of 
the form derived by George and Capp [29] for the 
buoyant sublayer region of a heated, vertical, flat 
plate, but the constants in the relation for velocity are 
not known accurately, even at low AT/T, (see Section 
I .2). Thus it would seem that refining the calculation 
mesh and predicting the details of the flow all the way 

to the waN is the most assured alternative. 
The present procedure requires specifying the value 

ofthe dissipation of turbulent kinetic energy at the wall. 
Using the low Reynolds number model of Jones and 
Launder [ 181, Plumb and Kennedy [ 191 and Lin and 
Churchill [20] carried their calculations all the way 
into the viscous sublayer while imposing a zero value 
for dissipation at the wall. As a result, their calculated 
‘dissipation’ cannot be viewed as a true isotropic 
dissipation (see [42]). This difficulty can be overcome 
by evaluating the wall dissipation from the simplified 
form ofthe turbulent kineticenergy equation in the wall 
region : see equations (15)-(17). This condition for 
dissipation together with no slip impermeable wall 
conditions for velocity and a constant wall temperature 

&- u, v, T, k, D 
I 

= 0 

a u, v, T, k, D 
ay [ 1 = o 

t 

Transition location I k specified -m--..--a 

I 
D estimated from equation (34) 

1 j $[u,v,T]= 0 

I 
I 

X 

ii, Vand T specified from Ostrach’s solution 

FIG. 1. Boundary conditions for heated, vertical, Bat plate flow. 
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are su~arized below : 

iii = 0 

T= T, 

k=O 

An estimate of the thickness of the viscous sublayer 
region in free convection is needed to maintain the 
necessary grid refinement in the numerical calculations. 
This can be derived from the correlation obtained by 
George and Capp [29] who find 

where qT is the inner region flow length scale. Using the 
LDV measurements in Cheesewright and Ierokipiotis 
[6] to estimate ,y; and qr, y + is found to be 
approximately 4. During the course of calculation, the 
grid refinement is continuously checked against this 
criterion. 

(ii) The furjeld Cfree boundaries). The free boundary 
conditions used are shown in Fig. 1. Velocity and 
temperature distributions along the upstream boun- 
dary were specified by imposing Ostrach’s [43] laminar 
flow solution at a distance of 0.05 m from the leading 
edge of the plate. Zero normal gradient conditions were 
imposed for all varaibles on the downstream and side 
boundaries. The side boundary was placed at a distance 
from the plate equal to 3.5 times the boundary-layer 
thickness at the end of the place. 

To initiate the turbulence calculations, a small 
amount of kinetic energy of turbulence (6 x 10m4 m2 
se2) was introduced at the experimentally observed 
transition points (Gr, = 2 x 10’ for AT = 56 K and 
Gr, = 1.5 x 10’ for AT = 404 K). The corresponding 
value of dissipation was then estimated from an 
approximate balance between shearing production 
and rate of dissipation. Thus, using the boundary-layer 
approximation, 

and equations (8) and (10) yield 

Equations for the turbulence variables were solved 
numeric~ly in the computational subdomain bounded 
by the transition plane, the downstream boundary, the 
wall and far-side free boundary. The remaining 
variables were computed throughout the entire 
computational domain. 

2.5. Numerical solution 
(i) ~e~hodo~og~. The REBUFFS code developed by 

LeQuere et al. [30] was extended to include the KEM 
and ASM turbulence model formulations described 

above. In REBUFFS, a control volume approach is 
adopted for obtaining finite-difference forms of the 
differential transport equations and their correspond- 
ing boundary conditions. This has been amply 
discussed in refs. [30] and [44]. Exactly the same 
approach is used to derive the additional difference 
equations required here for k, L) and the turbulent 
fluxes. The final forms of the difference equations apply 
to variable physical property (temperature dependent) 
flows. Note that boundary-layer simplifications are not 
used in formulating the difference equations since these 
are needed in elliptic form for calculating recirculating 
flows in cavities (the subject of Part II of this work). 

The methodology for performing the numerical 
calculations is described in ref. [30]. This involves an 
under-relaxed iteration sequence using an algorithm 
that is implicit in time. The extension to turbulent flow 
was achieved by introducing the calculation of k and D 
(followed by the calculation of the turbulent fluxes 
when using the ASM model) into the iteration 
sequence. No difficulties were experienced in obtaining 
steady-state results even when using very large time 
steps. 

All calculations were performed using a hybrid 
upwind-central differencing scheme [44]. Special care 
was taken to establish the number and distribution of 
grid nodes required to generate essentially grid- 
independent results. A nonuniform grid consisting of 52 
nodes in the streamwise direction, x, and 47 nodes in the 
cross-stream direction, y, was used. The cross-stream 
distribution of nodes was fixed by locating the first five 
nodes within the viscous sublayer (y’ < 4) and 
expanding the rest of the grid from the wall using a 
factor of 6/S. The distribution of nodes in the 
streamwise direction was such that about nine nodes 
were contained in the laminar region, 17 nodes were in 
the transition region and 24 nodes were in the fully 
turbulent region. This partitioning of streamwise grid 
nodes depended on the value ofAT = T, - T, since, for 
a fixed plate length L, the x-position for transition to 
turbulence was dictated by AT Relative to calculations 
performed on a 52 x 36 grid, the 52 x 47 grid yielded a 
0.4% change in total heat transfer and a 0.1% change in 
the maximum velocity. 

The calculations were performed on the CDC 7600 
machine at the Lawrence Berkeley Laboratory. KEM 
calculations using the finest grid required 265K octal 
words of computer storage and 0.5 s per iteration. 
About 500 iterations were necessary to obtain 
converged results. For the same grid, the convergence 
of ASM calculations was slower due to the additional 
iterations needed for solving the turbulent fluxes. The 
ASM calculations required 280K octal words of 
storage and 1.2 s per iteration. About 850 iterations 
were necessary to obtain converged results. Although 
substantial reductions in ASM computational times 
could be obtained by using converged KEM results as 
starting conditions, it was decided to conduct 
independent calculations in order to avoid any possible 
bias in the ASM results. 
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The convergence criterion was that the relative 
change of values of the variables between consecutive 
iterations at a critically located monitoring point 
should be less than 10m4 while simultaneously 
requiring that the respective sums of the absolute 
residual sources of mass, momentum, thermal energy, 
kinetic energy of turbulence and its rate of dissipation 
should all be less than 10m3. 

(ii) Testing. Various purely numerical aspects of the 
turbulent versions of the REBUFFS code were tested 
by calculating laminar free convection along a heated, 
vertical, flat plate. Excellent agreement was obtained 
with Ostrach’s [43] analytical solution, both for the 
Nusselt number and the temperature and velocity 
profiles. The calculations were performed using a 
nonuniform grid of 27 nodes in the cross-stream 
direction and 20 nodes in the streamwise direction. 
The plate length was 0.5 m which, with AT = 
T, - T, = 349-293 = 56 K, corresponds to a Grashof 
number of 1.1 x lo9 and an overheat ratio of 
AT/T, = 0.19. 

3. RESULTS AND DISCUSSION 

3.1. Preliminary considerations 
The production/destruction of turbulent kinetic 

energy due to buoyancy-driven flow along a heated, 
vertical, flat plate is 7 -p u g. Under the gradient 
assumption in the k-e model this quantity is 
proportional to - aT/ax and, as a result, represents a 
destruction, albeit small, of turbulent kinetic energy. 
This contrasts with what should be expected from 

simple considerations of the term -p’u’g, since one 
would anticipate a negative value ofp’ to correlate with 
a positive value of u’ on average. Therefore, the term 

-p’u’g represents a production term, as opposed to a 
destruction term, in the balance of k. Because of 
the inconsistency arising as a result of assuming 

p’u’g x aT/ax, Mason and Seban [lS] and Lin and 

Churchill [20] assumed that p’u’g is proportional to the 
transverse temperature gradient, 

No justification, other than the fact that the correct 
sense of contribution to k is now preserved, was given 
for this modified form of the gradient assumption. 
Nevertheless, these authors found that, at least for air, 
this contribution to k had a negligible effect on their 
numerical solutions and they therefore dropped the 
buoyancy term from the k-equation altogether. Plumb 

and Kennedy [19] assumed that p’u’ x ,/(T” k), but 
the constant of proportionality obtained by them is not 
universal. This is because the constant is of fixed sign 
and magnitude, and is specific to heated, vertical, flat 
plate flow. In fact, their assumption is not readily 
generalized to arbitrary stratified flows. 

KEM test results from this study showed that 

whether p’u’ x aT/ay or zero the effect on calculations 
of heat transfer, mean temperature and velocity is 
negligible. However, the turbulent kinetic energy 
maximum is decreased by 7% if buoyancy is neglected. 
Estimates of the shearing production and buoyancy 
production/destruction of k (shown in Fig. 10) can be 
obtained from the measurements by Miyamoto et al. 
[8]. These results show that buoyancy production is 
relatively small, compared to shearing production, 
everywhere except in the vicinity of the velocity 
maximum, and towards the edge of the boundary layer 
where both contributions to k are small. The 
measurements also indicate that buoyancy production 
is negative, but small, in the viscous sublayer, which 
probably explains the insensitivity of calculated heat 
transfer results to the buoyant production of k. 

As a result of the above, and in keeping with similar 
turbulence model approaches [15,20], direct buoyant 
contributions to the balance of k and E, the terms 
containing G in equations (13) and (14), have been 
neglected in the present vertical flat plate KEM 
calculations. This modeling difficulty does not arise in 
the ASM formulation since p’u’ is computeuom 
equation (6) using an algebraic expression for u’T’. 

While the turbulent Prandtl number, Pr,, does not 
arise in the ASM formulation, it is a critical parameter 
in the KEM formulation for it controls the heat 
transfer. For example, calculations showed that 
changing Pr, from 0.9 to 0.5 causes a reduction of 23% in 
the heat transfer. One can always refine Pr, in accord 
with the experimental data as was done by, for example, 
Mason and Seban [15] and Plumb and Kennedy [19]. 
The former used a step function and the latter used a 
smooth function of y/6 (6 being the boundary-layer 
thickness). A constant value of 0.9 was used in the 
present KEM formulation as was used by Lin and 
Churchill [20]. A comparison between present KEM 
heat transfer results and the predictions ofrefs. [ 151 and 
[19] using variable turbulent Prandtl number 
formulations showed insignificant differences. Further 
discussion concerning the variation of Pr, with distance 
from the wall is provided below. 

The results predicted by the KEM and ASM 
formulations are presented in the following subsec- 
tions. The results are compared to experimental data 
and earlier calculations wherever possible. 

(i) Heat transfer. Heat transfer results are shown in 
Fig. 2 in the form of plots of Nu, vs Gr,. The correlation 
for low ATfrom Siebers et al. [lo] represents the best fit 
to all low ATexperimental measurements performed to 
date. The integral analysis results of Eckert and 
Jackson [ll], Bayley [12], and the k-e model 
calculations by Plumb and Kennedy [ 191 and Lin and 
Churchill [20] are in close agreement but fall above the 
best fit for low AT. Corresponding k-l model 
predictions by Mason and Seban [15] fall below the 
best fit for data at low AT and exactly on the best fit for 
the data at high AT. However, because their model is 
premised on the applicability of the Boussinesq 
approximation the latter agreement is not especially 
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FIG. 2. Comparison between present KEM and ASM predictions of heated, vertical, flat plate, free convection 
flow and earlier calculations and measurements. Points refer to conditions actually predicted (KEM and 
ASM) or to interpolations from the numerical calculations of others. Dashed lines represent integral analysis 
results. Continuous lines are best fits to experimental data obtained by Siebers et al. [lo]. Vertical bar denotes 

uncertainty bounds on data measured by Siebers er al. [lo]. 

meaningful. Present ASM predictions for low ATshow 
only a slight improvement over the KEM results. By 
contrast, at high AT the ASM predictions are in closer 
relative agreement with the high AT measurements of 
ref. [lo]. Given the level of experimental uncertainty 
present in the measurements at both high and low AT, 
shown as a vertical bar in the figure, we must conclude 
that, in so far as the calculation of heat transfer from 
vertical flat plates is concerned, it would appear that the 
ASM is only marginally superior to the KEM. 

Figure 3 provides a more detailed comparison 
between ASM-calculated Nu, and the experimental 
correlations of ref. [lo] as a function of Gr,. The 
transition point to turbulent flow at high AT was taken 
as Gr, = 1.5 x lOs, as observed in ref. [lo]. However, 
numerical tests showed that the fully turbulent 
variation of Nu, with Gr, was ultimately independent 
of the choice of transition location. A similar 
observation has been made for low AT [lS]. In the 
laminar flow regime the calculations are in very good 
agreement with the measurements and follow the Gri14 
dependence. Calculations in the turbulent flow regime 
follow closely the Gr, ‘I3 dependence and agree with the 
measurements to within experimental error. 

(ii) Mean velocity and temperature. Predicted and 
measured streamwise velocity and temperature profiles 

are shown in Fig. 4 for low AT as a function of the 
nondimensional transverse coordinate, [ = yNu,/x. 
The measurements of velocity correspond to separate 
experiments performed by Cheesewright [S] (using a 
hot wire) and by Cheesewright and Ierokipiotis [6] 
(using a laser-Doppler velocimeter). Both sets of data 
are shown here since the first measurements were the 
target for the predictions of Mason and Seban [ 151 and 
Plumb and Kennedy [19]. Subsequently it has been 
shown (see [6]) that the first measurements are in error 
and that the second are to be preferred. The latter have 
been the target for our study. The measurements for 
temperature correspond to constant wall temperature 
[S] and constant heat flux [S] boundary conditions, 
respectively. The close agreement between these two 
sets of data is attributed to having used the same 
characteristic length scale for correlating the results. 

All the predictions of velocity are in reasonable 
agreement with the LDV measurements in ref. [6]. 
However, only the present KEM and ASM predictions 
are consistently good for all values of the transverse 
coordinate. Of these two, the ASM model yields a 
slightly better picture of the velocity component far- 
field behavior. Similar levels of agreement between 
measurements and predictions of temperature are 
obtained by Mason and Seban [15] and the present 
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FIG. 3. Measured (best fit lines) and ASM-predicted (points) variation of Nu, vs Gr, for the free convection flow 
along a heated, vertical, flat plate. Gr, values for triggering transition and transition ranges are indicated. 

KEM and ASM model formulations. But as before, 
only the KEM and ASM results are consistently good 
for all values of {. The k--E model predictions of Plumb 
and Kennedy [19] shows especially large discrepancies 
at intermediate values of [. 

(iii) Turbulence quantities. Measured and ASM- 
calculated turbulent stresses and heat fluxes are shown 
in Figs. 5 and 6. The ex~riment~ velocity data 
were obtained using a laser-Doppler velocimeter. 
Temperature was measured using fine thermocouples. 
Although critical uncertainty analyses are not provided 
in refs. [6] or [S], Humphrey et al. [I] show that mean 
velocities in free convection Rows can be determined 
fairly accurately using the LDV technique. However, 
the fluctuating components of motion are prone to 
large uncertainties. These are due, mainly, to 
inhomogeneous particle seeding and inhomogeneous 
refractive index effects or ‘beam dancing’. Therefore, 
while we view the present comparisons as being of great 
importance for validating qualitative aspects of the 
ASM model, a quantitative optimization ofthemodel is 
unjustified until definitive measurements of relevant 
turbulence quantities are available for this purpose. 

The calculated streamwise component of turbulence 
intensity in Fig. 5, corresponding to low 6’7: shows an 
interesting variation. Between 4 = 0.5 and 2 the rapid 

- 
increase in (u”)“*/ti, is suddenly halted at a value of 
about 0.19. Since the calculated velocity maximum 

- 
peaks at [ = 1.8 (Fig. 9) and u’u’ goes through zero at 
about 1: = 1.5 (Fig. 6), for low AT the shearing 

production of 2, equation (24), is minimized between 
[ = 1.5 and 1.8 approximately. (In point of fact this is 
a region of small ‘negative’ production.) Similarly, the 

buoyancy production of this component [equation 
(26)] is also small in this region. This can be shown by 
substitution ofequation (6) in (26) and noting from Fig. 

6 that the calculated UT’, for low Ahl; goes through zero 
at about 5 = 1.4. Although there are discrepancies 
between the calculations and measurements for 

(u’~)‘/~,$,,, the experimental data also show a 
temporary halting in the growth of this component 
when it reaches a value of about 0.21. 

It seems reasonable to assume that, with the shear - 
and buoyancy production of u” suppressed, pressure 

redistribution ofenergy from this component to? and - - 
w” should work to further reduce the value of u”. The 
anisotropic influence of wall damping should be 

r2 expected to favor energy transfer to w over 3 and, in 

fact, Fig. 5 shows that p is considerably larger than? 
in the near-wall region of the flow. Further away from 
the wall, shearing and buoyant production once again 

increase the level of z. Reduced w~l-damping of p 
allows this component to increase through pressure- 

redistribution of energy. By contrast, the z 
component decreases markedly in the outer flow region 
for which there is no immediately obvious explanation. 
However, we note that this component is found from - 
w” = 2k-(u” +p), where u” and v” are calculated 
from algebraic relations obtained by neglecting 
convection and diffusion in the respective stress 
transport equations. The profiles in Fig. 10 (discussed 
below) show that convection and turbulent diffusion 
significantly affect the balance of k. In particular, 
turbulent diffusion works to transport k from the 
outer flow to the near wall region. As a result, the 
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FIG. 4. Measured (points) and predicted (lines) of streamwise velocity, temperature and temperature 
fluctuation profiles in the turbulent region offree convection flow along a heated, vertical, flat plate at low AT. 

ASM-calculated values of z and v” are somewhat flow region values would be substantially increased. - 
overestimated while values for w” are underestimated 

in the outer flow region. Assuming that v” has been 
calculated correctly (see Fig. 5) the amount by which the 

ASM-calculated value of p should be adjusted is 
approximately the difference between the measured 

and calculated values of p. Thus, the near-wall peak - 
value of w” would be slightly reduced while the outer- 

Predictions of the turbulent shear stress, u’v’, and of 

the heat fluxes, u'T' and v’T’, are shown as 
appropriately normalized quantities in Fig. 6 for AT 
= 56 K and AT = 404 K. The results are in good 
qualitative agreement with the measurements. In 
particular, the experimentally observed regions of 

-- 
negative u’v’ and u’T’ are resolved numerically, and it is 
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5. Measured (points) and predicted (lines) normal 
components of turbulent stress in free convection flow along a 

heated, vertical, flat plate at low AT 

clear from the calculations that the positions of zero 
shear stress and zero transverse gradient of the 
streamwise velocity component do not coincide. The 
rather large absolute differences between profiles 
computed for AT = 56 K and 404 K are due to the 
temperature-dependent factors used for normalization. 
It is clear from the plots that the shape of the profiles for 
the turbulent fluxes are essentially independent of 
yariations in AT The systematic overprediction of the 
turbulent fluxes ofmomentum and heat in the near-wall 
region is partly due to the neglect of convection and 
diffusion in the models for these variables. It is 

interesting to note that because u’T’ < 0 very near the 

wall (c < 1.4 for AT= 56 K), equation (6) gives p’u’ > 0. 
As a consequence, term G in equation (13) for k is 
negative, which implies a damping of turbulent kinetic 
energy in this region due to buoyant effects; see also Fig. 
10 discussed further below. 

Measurements and calculations of the temperature 

fluctuations, T”, are provided in Fig. 4. Of the three 
calculations shown, the ASM prediction comes nearest 

to matching the magnitude of T” near the wall while 
the KEM does a slightly better job of predicting its 
location. These near-wall differences are attributed to 

the way u:T’ is evaluated in each case. Both models 

overpredict the far field values of Y2. Neither of the 

near-wall features (magnitude/location) is well pre- 
dicted by ref. [19]. Assuming that the measurements 

are correct, we can only conclude that the present 

model for T’Z, equation (20), is superior. 
From the ASM calculations it is possible to obtain 

the quantity 

-- 
Pr, = Nu'u'Mu'~)l ayay = 

am f(r) 

(36) 

for both high and low AT The results are shown in Fig. 7 
together with estimates of Pr, obtained from the free 
convection data of Miyamoto et al. [8]. Unfortunately, 
the experiments were not performed for identical 
conditions. Thus the bars in the figure compound 
variations between experiments with uncertainties 
within experiments. Notwithstanding, the trend in the 
data supports the calculated variation of Pr, with 
distance from the wall. The calculated distributions 
peak between the locations of maximum shear stress 
and maximum velocity and show a relatively 
pronounced dependence on temperature. Noting that 
a value of [ = 6 corresponds to a y + = 115, ap- 
proximately, present results show Pr, decreasing 
between y+ N 115 and the wall. This contrasts with the 
variation known to arise in forced convection air flows 

(see, for example, [45]) where Pr, increases from about 1 
to 2 as y+ decreases from 60 to 10. It is seen from Fig. 7 
that a constant value of Pr, = 0.9 for the KEM 
calculations is a reasonable choice. 

(iv) Near-wall results. The near-wall results need 
further discussion since this is where the resultant 
flow and heat transfer are controlled. Attempts to 
plot velocity distributions in terms of wall variables 
(u’ vs y’) did not yield meaningful results. Although 
the profiles showed regions in which the velocity 
distributions could be approximated by logarithmic 
functions, the functions required different values of the 
Von Karman constant depending on the overheat ratio 
and Grashof number. 

A comparison using a l/3 power law is shown in Fig. 

8. Due to the large AT range considered numerically, a 
film temperature, T, = (T,+ T,)/2, has been used to 
evaluate physical properties. The measurements are 
reasonably well correlated by the l/3 power law in the 
buoyant sublayer, but with a displacement constant 
and slope different from that proposed in [29]. (In all 
fairness, it should be noted that the data available to 
George and Capp [29] for determining the power law 
constants was scanty and subject to unquantified 
uncertainty.) The predictions show that the depen- 
dence of the near-wall velocity distribution on 

temperature is only moderate. The forms of the 
calculated correlations are : 

113 

-9.9 (AT= 56 K) (37a) 

and 

- 11.3 (AT = 404 K). (37b) 
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FIG. 6. Measured (points) and predicted(lines) values of turbulent shear stress and heat fluxes in freeconvection 
flow along a heated, vertical, flat plate. 
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FIG. 7. Variation of Pr, with distance from the waI1 for free 
convection along a heated, vertical, flat plate. 

An attempt to obtain a single correlation valid for both 
high and low AT using & = ~~y,,./ym)(Tw/Tm)o~14, as 
suggested for temperature in ref. [IO], proved 
unsuccessful. Experimental data in the linear region, 
tj~/~~)“~ < 1.2 according to [29], are lacking and it is 
not possible to judge quantitatively the accuracy of the 
model calculations. 

Near-wall measured and calculated temperature 
profiles are compared in Fig. 8 with the analytical 
formulations derived in ref. [29] for the viscous and 
buoyant sublayer regions. Agreement between the 
measurements of ref. [lo) and present calculations is 
very good, especially at AT = 404 K. While the 
temperature variation through the buoyant sublayer is 
well approximated by the expression derived in ref. 
[29], that obtained for the viscous region departs 
si~ificantly from both the me~urements and 
calculations. The temperature correlations caiculated 
numerically are : 

- l/3 

B = 1.35 
0 

J. 
VT 

-0.27 (AT = 56 K) (38a) 

and 

1.28 0 2 
-l/3 

0 = 

rl; 
-0.28 (AT = 404 K). (38b) 

These results show clearly that it is inappropriate to 
use logarithmic relations, derived from considerations 
of forced convection flow, as boundary conditions in 
free convection flow for patching a wall with the fully 
turbulent region. Instead, as suggested in ref. [29], a l/3 
power law appears to provide a good representation of 
both velocity and temperature variations in the 
buoyant sublayer region in free convection flow. 
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FIG. 8. Measured and ASM-predicted near-wall variations of 
streamwise velocity and tem~raturefor freeconvection along 
a heated, vertical, flat plate. Velocity coordinates suggested by 
George and Capp [29]. Temperature abscissa coordinate 

suggested by Siebers et al. [lo]. 

(v) Overheat e$eets. Calculations were performed to 
establish the influence of varying AT/T, on turbulent 
free convection along a heated, vertical, flat plate. Some 
of the results obtained are shown in Fig. 9. 

The mean velocity and temperature profiles reveal a 
strong dependence on AT in the near-wall region of the 
flow (between the wall and the velocity maximum). By 
contrast, the outer region shows a stronger dependence 
on Gr, than on AT Given that 60% of the temperature 
drop takes place between the wall and the velocity 
maximum, the latter result is not too surprising. As AT 
increases, the characteristic thermal spreading distance 
of the boundary layer increases and, since the Prandtl 

“Wf 29:4-F 
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FIG. 9. Measurements and ASM predictions ofstreamwise velocity, temperature and temperature fluctuations 
for free convection along a heated, vertical, flat plate for two values of A’l 
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number in this temperature range is constant, the 
corresponding viscous spreading length must also 
increase. The strong reduction in ri/ti,,, with increasing 
AT near the wall is attributed to the temperature 
dependence of viscosity which, for air, increases as J?? 
This has the effect ofincreasing viscous forces relative to 
buoyant forces in the near-wall region and slows down 
the flow. The same variations with AT have been 
observed ex~riment~ly and predicted theoretically in 
the laminar flow study of Cairnie and Harrison [7]. 

Calculations of the turbulent kinetic energy and the 
normal stress components, available in ref. [31], show 
that increasing temperature has the effect of decreasing 
the relative turbulence intensity of the three normal 

stress components; although the u” component shows 
a small increase in the near-wall region. 

A comparison between measured and predicted 

values of T” shows good qualitative agreement. Near- 

wall values of T” are unpredicted while the outer flow 
values are overpredicted. This is partly attributed to the 

neglect of convection and diffusion in the model for p. 

As fork, turbulent diffusion is expected to transport Tz 
from the outer to the inner region of the flow, but this 
has not been accounted for in the model. 

The turbuIent kinetic energy budget was calculated 
for low and high AT. The low AT results are shown in 
Fig. 10. The physical contributions to the balance of k 
are identified in the figure. At high AT, the small region 
of negative shearing production (located around the 
velocity maximum) almost disappears. By contrast, the 
region of viscous diffusion extends further from the 
wall, although the relative magnitude of this effect is 
smaller at high 61: Aside from these differences, the 
profiles for each term in the budget show similar 
variations for both low and high AT. 

Everywhere, dissipation and convection represent 
sinks in the balance of k. Near the wall the loss of k 
through dissipation becomes very large where it is 
balanced almost exclusively by shearing production. 
Shearing production becomes very small near the 
maximum velocity location and dissipation is now 
balanced essentially by an influx of k through turbulent 
diffusion from the near-wall and outer-flow regions. In 
the far field, turbulent diffusion also works to transport 
k away from the wall. In this region turbulent diffusion 
and shearing production are essentially balanced by 
dissipation and convection. 

Except for a region bounded roughly by y/6,, = 0.075 
and 0.3, buoyancy production is always less than 
shearing production. Between y/6, = 0 and 0.075 the 
buoyancy term is negative and works to dampen 
turbulent fluctuations in the flow. Between y/6, = 
0.075 and 0.3 the dissipation of k is approximately 
balanced by the combined effects of buoyancy 
production, shear production and turbulent diffusion. 

4. CONCLUSIONS 

Two low Reynolds number turbulence model 
formulations have been developed for predicting wall- 
bounded, variable property, free convection flows. The 
KEM model relates turbulent fluxes to eddy viscosities 
via a generalized Boussinesq hypothesis. The ASM 
model calculates the turbulent fluxes from algebraic 
expressions derived from simplified forms of transport 
equations for the fluxes. For this, the main assumption 
is that of an equilibrium turbulent flow. Both models 
include wall-damping effects on turb~ent transport. 
For the KEM model this involves introducing 
a turbulence Reynolds number dependence along 

6 Turbuieni dzfrusion 
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FIG. 10. Energy budget, normalized by (p,@,&), for low AT (56 K) and Gr, = 5.6 x 10“‘. 
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the lines of a Van Driest formulation for turbulent 
viscosity. In addition, the ASM model includes 
pressure redistribution and wall-damping effects on the 
transport of the turbulent fluxes. 

Standard closure practices have been extended and 
improved to accommodate the needs of the present 
flow. These include retaining buoyancy production 
terms in the turbulent kinetic energy and the turbulent 
flux equations in the ASM formulation. The use of 
additional auxiliary relations derived from the 
equation of state, valid for air, facilitate the calculations 
of high temperature flows which do not follow the 
Boussinesq approximation. It has not been necessary 
to introduce new model constants into the model 
formulations. Values for the constants used have been 
taken from the literature. Further optimization of the 
constants must await the availability of more accurate 
and extensive experimental data relating to turbulence 

quantities. 
Both models predict well the heat transfer and the 

mean flow characteristics of a heated, vertical, flat 
plate with the ASM model performing slightly better. In 
addition, the ASM model yields predictions of the 
anisotropic turbulence characteristics which are in 
good qualitative agreement with available experi- 
mental results. The discrepancies observed are possibly 
due, at least in part, to the assumption of an equilibrium 
flow, but the lack of an experimental uncertainty 
analysis makes this difficult to quantify. Near-wall 
computations support a y ‘I3 dependence for velocity 

and a y 1’3 dependence for temperature in the buoyant 
sublayer. Values of the power law constants for 
velocity and temperature (derived numerically) are 

presented here for the first time. 
Predictions of the budget for turbulent kinetic en- 

ergy show that in the outer-flow region all terms in 
the balance are of comparable magnitude. In the 
neighborhood of the velocity maximum, dissipation is 
balanced primarily by turbulent diffusion. Between this 
maximum and the wall, the buoyancy production term 
is negative and works to dampen turbulent fluctua- 
tions. In this region dissipation is balanced primarily by 
shearing production. 
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SIMULATION NUMERIQUE D’UN ECOULEMENT TURBULENT LIBRE. 
I-CONVECTION NATURELLE LE LONG D’UNE PLAQUE VERTICALE CHAUDE 

R&urn&On diveloppe deux modirles pour prtdire la convection naturelle turbulente a faible nombre de 
Reynolds. Ces modeles s’appliquent aussi g la convection mixte. Le premier, du type k-e, est bask sur la notion 
de diffusivites turbulentes de la quantitt de mouvement et de la chaleur. Le second, un mod+le algkbrique de 
contrainte, est base sur des approximations d&iv&es de flux turbulents anisotropes par une troncature 
convenable de leurs tquations de conservation. Les deux formulations s’appliquent aux tcoulements $ 
propri&&s variables avec des rapports 61ev6s AT/T,. II n’y a pas d’adaptation des valeurs des constantes pour 
obtenir un accord entre les mesures et les prCvisions. Les formes elliptiques des tquations de transport, avec 
leurs conditions aux limites appropriies, sont rksolues numtriquement pour deux cas bidimensionnels. Le 
premier correspond g la convection naturelle le long d’une plaque verticale chauffie et il fait l’objet de cet 
article. Le second correspond a la convection dans une cavitt chauffke, de section rectangulaire arbitraires et 
d’orientation variable, irtudi6 dans une seconde partie. Pour le premier cas, une comparaison entre les mesures 
et les p&dictions montre que les deux modeles donnent des rtsultats pricis pqur Itcoulement moyen et le 
transfert thennique. Les distributions parittales de vitesse et de tempdrature r&lent la loi puissance l/3 de 
George et Capp [lnt. J. Heat Mass Transfer 22,813-828 (1979)] et confirm&e pour la temptrature par Siebers 
et al. [J. Heat Transfer 167,124-134 (1985)]. Les valeurs des constantes des lois puissances pour la vitesse et la 
temperature sont obtenues numkriquement pour AT/T, faible et grand. Les contraintes de Reynolds et les 
distributions de flux de chaleur sont en bon accord qualitatif avec les mesures de Miyamoto et alii [Proc. 7th 
Int. Heat Transfer Conference, Vol. 2, pp. 323-328 (1982)]. En particulier le calcul r&vile les r&ions de 

production nigative d’bnergie cinttique observ6es exp&imentalement. 
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NUMERISCHE SIMULATION TURBULENTER AUFTRIEBSSTROMUNGEN-I. 
FREIE KONVEKTION AN EINER BEHEIZTEN SENKRECHTEN PLATTE 

Zusammenfassung-Zwei Modelle zur Berechnung der freien Konvektion in turbulenten Striimungen bei 
kleinen Reynoldszahlen wurden entwickelt. Die Modelle kiinnen such auf gemischte Konvektionsstriimun- 
gen angewandt werden. Das erste, ein k, s-Modell, basiert auf den turbulenten Transportgrijflen fiir Impuls 
und Wgrme. Das zweite Modell, ein algebraisches Spannungsmodell, basiert auf Niiherungslijsungen fiir die 
anisotropen turbulenten StrBme, die aus geeigneten Vereinfachungen der Erhaltungssitze gewonnen wurden. 
Beide Formulierungen sind anwendbar auf Striimungen mit variablen Eigenschaften und hohen 
uberhitzungsverhlltnissen AT/T, und beniitigen keine Definition neuer Modellkonstanten. Kein Versuch 
wurde unternommen, die bekannten Werte fiir die Konstanten zu modifizieren, urn die ubereinstimmung 
zwischen Messungen und Berechnungen der untersuchten Stramungen zu verbessern. Fiir eine solche 
OptimierungmuS die Verfiigbarkeit detaillierterer und zuverllssiger experimenteller Daten von turbulenten 
Gr613en abgewartet werden. Voll elliptische Formen der Differentialgleichungen fiir den Transport mit 
geeigneten speziellen Randbedingungen werden numerisch fiir zwei zweidimensionale Konfigurationen 
gel&t. Die erste gilt fiir freie Konvektion llngs einer beheizten senkrechten Platte und ist Gegenstand von Teil 
I dieses Berichts. Die zweite gilt fiir freie und gemischte Konvektion von einer beheizten Vertiefung mit 
beliebigem rechteckigem Querschnitt und variabler Oberfllche und ist Gegenstand von Teil II. Fiir den Fall 
der senkrechten Platte zeigt ein Vergleich zwischen Messungen und Berechnungen, dal3 beide Modelle 
ziemlich genaue Ergebnisse fiir die mittlere Stramungsgeschwindigkeit und den mittleren Wirmeiibergang 
liefern. Wandnahe Geschwindigkeits- und Temperaturverteilungen, berechnet mit beiden Modellen, zeigen 

die bekannte l/3-Potenz AbhPngigkeit. 

‘4MCJIEHHOE MCCJIEAOBAHI4E I-IOfl-bEMHOI-0 TYPEYJIEHTHOrO TE’4EHMR--I. 
CBO6OAHAR KOHBEKqM5’l OKOJIO HArPETOR BEPTkiKAJIbHOI? I-IJIOCKOR 

IIJIACTMHbI 

ArolOTaUWT--~peZUIO~eHb1 ABe MOLIeJIB JIJUI paNeTa CB060AHOKOHBeKTUBHbIX Typ6yneHTHbIX Te'IeHHii 

IIpH ManbIX WCnaXPefiHOnbnCa,KOTOpbIe IIpHMeHAMbITaK%? B KCMeUIaHHOKOHBeKTABHbIM Te'IeHWIM. 

l-lepBaK,k-&-MOnenb,OCHOBaHaHa IIOHKTHH Typ6yJIeHTHOti TeMIIepaTypOIIpOBO~OCT~ !JJUI BMIIynbCa B 

Tenna. BTopar, Monenb anr&paHYeCKOrO HanpnmeHsn, 6a3EipyeTcn Ha anIIpoKcaMaLvirx COOTBeT- 

CTByIOIWiX 3aKOHOB COXpaHeHWIWIKaHII30TpOIIHbIX Typ6yneHTHbIx IIOTOKOB.06eMO~en~IIpHMeHHMbI 

K IIOTOKaM C rIepeMeHHbIMH XapaKTepHCTBKaMA II 60nbIIIEiMIi OTHOIIIeHHKMA IIeperpeBa AT/T, II He 

Tpe6yIoT BBelleHWIl HOBbIX IIOCTORHHbIX MOnenH. nOIIbITOK yTO'IHeHUR paHee II~JIJIOwteHHbIX 3Ha'IeHLifi 

IIOCTORHHbIX LI,Ill yny'II"eHHK COOTBeTCTBUR MeWIy 3KCIIepIIMeHTanbHbIMB B PaCYeTHbIMIl XapaKTepHC- 

TmcaMn wccnenyeMor0 TeYeHn* He npennpwHEiManocb.TaKoe yTovHeHse nonmH0 0nsipaTbcr Ha 6onee 
L,eTa,IbHbIe B HaJlegHbIe 3KCIIepIiMeHTanbHbIe H3MepeHHK XapaKTepHCT&iK Typ6yneHTHOCTH. nOnHbIe 

3nnUIITWECKBe LIByMepHbIe JJH$+epeHUWIbHbIe ypaBHeHHX IIepeHOCa C 3WaHHbIMEi rpaHW'IHbIMH yCnO- 

BWIMH peIIIeHb1 'IHCneHHO ,QJDI nByX BHnOB Te'IeHHfi. B 1 'IaCTSi EiCCnenyeTCn CBO60nHaK KOHBeKIWR y 

HarpeToi BepTFIKanbHOfi nnacTIwb*. Bo BTOpOfi qaCTEi paccMaTpuBaeTcRCBO60nHar EicMeIlIaHHas KOH- 

BeKIJHll BHarpeTofi rIonocTHnpou3BonbHoronpRMOyrOnbHOrOce~eHar IIpFipa3nauaofiee OpeeHTaLwi. 

B 3TOM Cnygae CpaBHeHEie L,aHHbIX H3MepeHEiii C p3ynbTaTaMH paC'IeTOB IIOKa3bIBaeT,'ITO o6e MOLIenH 
naIOTnOBO,TbHO TOYHbIe3HaSeHB~ aHTerp~bHbIXXapaKTepaCTHKTereHARuTennOO6MeHa,PaCn~nene- 

HASI CKOpOCTE, B TeMIIepaTypbI y CTeHKB, HaZineHHbIe II0 o6euh4 MOJIenllM, LIaIOT CTeIIeHHyIO 3aBIICI1- 

MocTb c noKa3aTeneM l/3, nonygemym &KopnmeM H KannoM [lnt. J. Hear Mass Transfer 22, 813-826 
(1979)] II nonTaepmneHHyfo nnzi TeMnepaTypbI Cefi6epcoM A np. [J. Heat Transfer 107, 124136 (1985)]. 
3Ha'IeHWI IIOCTOIlHHbIX B CTeIIeHHbIX SBBNCUMOCTRX &WI CKOpOCTH B TeMIIepaTypbI IIOny'IeHbI 'IHCneHHO 

&nK 6onbunix a ManbIx sHaveH~iiAT/T,.Pac~eT~aHu3oTponHoropeiiHonbncoBaHanprmeHan R pacn- 

penWIeH&,ir Typ6yneHTHOrO TeIInOBOrO IIOTOKa Ka'IeCTBeHHO COOTBeTCTByloT H3MepeHWIMA MAKMOTO U 

np. [Proc. 7th Int. Heat Transfer Conference, Vol. 2, pp. 323-328 (1982)J B qacTHocT%i, c IIOMOIIlbPJ 
paC~eTOBT09HOO~pe~eneHbIHa6nIo~aeMbIe3KC~ep~MeHT~bHO o6nacTrinpOu3BOnCTBaTyp6yneHTHOfi 

KBHeTIlreCKOii3HeprHH38C'leTOTpAUaTenbHOiinOLIMMHOiiCAnbIUCIIBUra. 


