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Abstract—Two models have been developed for predicting free convection low Reynolds number turbulent
flows. The models also apply to mixed convection flows. The first, a k—e model, is based on the notion of eddy
diffusivities for momentum and heat. The second, an algebraic stress model, is based on approximations
derived for the anisotropic turbulent fluxes by a suitable truncation of their conservation equations. Both
formulations apply to variable property flows with high overheat ratios, AT/T,, and have not required the
definition of new model constants. No attempt has been made to modify previously established values of the
constantsin order toimprove agreement between measurements and predictions of the fiow investigated. Such
an optimization must await the availability of more detailed and reliable experimental measurements of
turbulence-related quantities,

Fully elliptic forms of the differential transport equations, subject to appropriately specified boundary
conditions, have been solved numerically for two flow configurations. Both are two-dimensional. The first
corresponds to free convection along a heated vertical flat plate and is the subject of Part I of this study. The
second corresponds to free and mixed convection from a heated cavity of arbitrary rectangular cross-section
and variable orientation, and is the subject of Part IL.

For the case of the vertical plate, a comparison between measurements and predictions shows that both
models yield fairly accurate results for the mean flow and heat transfer. Near-wall velocity and temperature
distributions predicted by both models reveal the 1/3 power-law dependence derived by George and Capp
[Int. J. Heat Mass Transfer 22, 813826 (1979)] and confirmed for temperature by Siebers et alf [J. Heat
Transfer 107, 124-132 (1985)]. Values of the constants in the power-law relations for velocity and temperature
have been obtained here numerically for high and low AT/T,. Predictions of the anisotropic Reynolds stress
and turbulent heat flux distributions are in good qualitative agreement with the measurements of Miyamoto et
al. [Proc. Tth Int. Heat Transfer Conference, Vol. 2, pp. 323-328 (1982)). In particular, regions of negative
buoyant and shear production of turbulent kinetic energy observed experimentally are clearly revealed by the

calculations.

1. INTRODUCTION

1.1. The problem of interest and objectives of this study
ASIDE from its intrinsic value, the accurate modeling of
turbulent free convection from a heated, flat plate is
considered to be a logical first step towards the
numerical simulation of more complex, buoyancy-
affected, turbulent flows. However, in reviewing the
literature it becomes apparent that even the case of
steady, two-dimensional (in the mean) free convection
along a vertical flat plate has not yet been satisfactorily
resolved. While there exist numerous experimental
measurements and theoretical calculations of mean
flow and heat transfer quantities (such as velocity,
temperature and the heat transfer coefficient), and there
are empirically and theoretically derived correlations
available to predict the heat transfer to within
experimental uncertainty, no calculation to date has
been directed towards resolving the mean flow and the
anisotropic turbulence characteristics simultaneously.
Furthermore, all calculation approaches so far have
made use of the Boussinesq approximation, which
limits their applicability to relatively small values of the
overheat ratio, (T, — T,.)/ T, )

The objective of the present study has been to
developand test two closure approximations which will
correctly predict the mean flow and heat transfer of a

variable property fluid in turbulent free convection
along a heated, vertical, flat plate. The models also
apply to mixed convection flows. In one case closure is
based on the notion of isotropic eddy diffusion
coefficients for the turbulent transport of momentum
and heat, while in the other special attention is paid to
simulating the anisotropic characteristics of the
turbulent fluxes. Both models account for low
Reynolds number turbulent flow conditions near walls,
where wall-damping takes place, and far away from
them where, in the absence of shear production,
turbulent fluctuations decay to small values.

A comparison between the quantities predicted by
both models show that they are equally capable of
yielding fairly accurate results for the mean flow and
heat transfer. As a result, the simpler model, that based
on eddy diffusion coefficients, has also been applied to
simulate free and mixed convection in strongly heated
cavities. In this paper, Part I, we communicate the work
performed for the flat plate configuration. In a second
paper, Part II, we provide an account of the work
performed for the cavity configuration.

1.2. Earlier work

(i) Free convection along a vertical, flat plate. A
literature review of convective heat transfer in heated
cavities, enclosures and along flat plates has been given
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NOMENCLATURE

specific heat at constant pressure
turbulence quantity related to ¢ through
v, (Buy/0x J(Ouy/ox;) = &fv

gravitational constant

component i of the gravitation vector
buoyancy production of turbulent
kinetic energy, p'uig;

buoyancy production of uju; (defined in
text)

local Grashof number, g ATx3/vZ
modified local Grashof number,

heat transfer coefficient

turbulent kinetic energy, uju;/2

local Nusselt number, hx/y,,

pressure

shear production of turbulent kinetic
energy, — puju; O0il,/0x;

shear production of uu} (defined in text)
shear production of 4T’ (defined in text)
Prandtl number, uC,/y

turbulent Prandtl number

wall heat flux

turbulent Reynolds number, §k?/ue
velocity-temperature correlation
coefficient, u' T'//(w?)/(T'?)
temperature

film temperature, (T, + T,)/2

wall temperature

ambient temperature (293 K)

time

longitudinal (streamwise) velocity
component

velocity component in i-direction
maximum velocity along a flat plate
characteristic velocity along a flat plate,
2/9B,ATx

inner region velocity scale,

(9B ATV, /Pr)'?

dimensionless velocity, @/u,
characteristic shear stress velocity,

AN/

longitudinal turbulent heat flux
turbulent shear stress

transverse velocity component
(perpendicular to flat plate)

transverse turbulent heat flux

spanwise velocity component (parallel to
flat plate)

X; spatial coordinate in i-direction
x longitudinal coordinate ; distance from
the leading edge of a flat plate
y transverse coordinate; distance
perpendicular to the flat plate
y* dimensionless transverse coordinate,
¥/y:
Ve transverse length scale, v/u,
Greek symbols
B coefficient of volume expansion, 1/7,,
y thermal conductivity
d;;  Kronecker delta ©
A outer region length scale, J (/i) dy
0
AT  characteristic temperature difference,
To—T,
€ isotropic dissipation of turbulent kinetic
energy, vD
4 dimensionless transverse coordinate,
YNu,/x
. inner region length scale,
[(V/PrY /(9B AT
1T modified inner region length scale,
11w/ VX T/ T)> 1
¢ nondimensional temperature,
(T_ Too}/(Tw‘.' Too)
u molecular viscosity
e turbulent viscosity
v molecular kinematic viscosity
my;  pressure redistribution of wu]
n,r  pressure redistribution of ;T
P density
O Prandtl number for k
o, Prandtl number for &
T wall shear stress.
Superscripts
! fluctuating quantities
mean quantities.
Subscripts
iJj spatial coordinate indices
m maximum value
t turbulent quantity
w wall condition
f film temperature
o ambient condition.
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in Humphrey et al. [1]. A summary is provided here of
those investigations most relevant to the present work.

Among the early experimental works on turbulent
free convection flow along vertical, flat plates are the
contributions by Warner and Arpaci [2], Lock and
Trotter [3], Goldstein and Eckert [4] and
Cheesewright [5] for low overheat ratio. More recent
investigations using the laser—Doppler velocimeter
(LDV} technique have been conducted by
Cheesewright and Ierokipiotis [6]for AT/T,, ~ 0.2, by
Cairnie and Harrison [7] for 0.26 < AT/T,, < 1.28
and by Miyamoto et al. [8] for AT/T, ~ 0.12. By
measuring temperature and velocity simultaneously at
essentially the same location, Miyamoto et al. [8]
obtained turbulent stress and heat flux distributions in
addition to mean flow quantities. Cheesewright and
Doan [9] have performed a fairly detailed study of
space—time correlations using the hot wire technique.
Siebers et al. [10] have measured distributions of the
heat transfer coefficient and of temperature over the
Grashof number range 1.7 x 10'! < Gr, < 1.86 x 1012
with 0.14 < AT/T,, < 1.73. A major result from their
work was the following correlation for the local Nusselt
number

T -0.14
Nu, = 0.098 Gr;/3(T—“) . 1)

@©

The last term in equation (1) accounts for the physical
property dependence of air on temperature.

Theoretical analyses using integral formulations
have been performed by, among others, Eckert and
Jackson [11], Bayley [12], Oosthuizen [13] and Kato
et al. [14]. Numerical predictions using isotropic eddy
diffusion turbulence models have been made by Mason
and Seban [15], Cecebi and Khattab [16] and Siebers
[17]. Predictions based on the low Reynolds number
k—¢ turbulence model of Jones and Launder [18] have
been made by Plumb and Kennedy [19] and Lin and
Churchill [20]. The above theoretical analyses and
numerical procedures have yielded results in good
agreement with measurements of heat transfer. The
numerical approaches also give correct distributions of
mean velocity and temperature but, due to the
assumption of an isotropic eddy diffusion coefficient,
cannot predict the detailed anisotropic characteristics
of the turbulent flow.

(i) Modeling turbulence with buoyant effects.
Theoretical formulations for simulating high Reynolds
number turbulent flows subject to gravitational forces
have been developed for conditions where the
Boussinesq approximation applies; see, for example,
the reviews given by Launder [21], Hirata et al. [22]
and Hosain and Rodi[23]. For an elegant discussion of
the Boussinesq approximation the reader is referred to
Gray and Giorgini [24].

The present work builds upon and extends the
investigations by Launder [25] and Gibson and
Launder [26]. These authors have derived algebraic
relations for the turbulent stress and heat flux
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components in high Reynolds number (locally
isotropic) equilibrium shear flows. Launder [25]
suggested a way for including gravitational effectsin the
pressure-correlation terms affecting the balance of the
turbulent fluxes. Gibson and Launder [26] extended
this work by accounting for the modification of the
fluctuating pressure field by the presence of a wall.
Applications of these concepts are to be found in the
numerical studies of Gibson and Launder [27] and
Ljuboja and Rodi [28].

In high Reynolds number turbulence model
formulations it is possible to use logarithmic law-of-
the-wall relations for velocity and temperature to patch
the region of flow lying between a wall and the first
calculation location adjacent to the wall, This is not
possible in the present flow where low Reynolds
number conditions arise both near the wall and far
away from it. The formulation to be developed must
account for this effect as well as arbitrary wall
orientation and the variation of physical properties
with temperature.

Velocity and temperature power-law relations have
been derived by George and Capp [29] for the buoyant
sublayer region of turbulent free convection along a
heated, vertical, flat plate at low AT/T,,. Siebers et al.
[10] verified the 1/3 power dependence for temperature
with distance from the wall, but they found it necessary
to modify the inner region length scale proposed in ref.
[29] by including a dimensionless wall temperature
factor. This empirical adjustment is needed to account
for the temperature dependence of physical properties
at high overheat ratios.

ForlowAT/T, itis possible to estimate values for the
constants in the power-law relations of ref. [29] from
existing measurements of temperature and recent
detailed measurements of velocity. However, cor-
responding values of the constants for high AT/T, can
only be obtained for temperature, from the data of ref.
[10]. Given that the relations derived [29] apply only
to vertical plates, and given the relatively large
uncertainties associated with determining the power-
law constants, we have eschewed a modeling approach
which relies on the availability of some general form of a
wall relation. Instead, we have sought to predict the
flow directly, by using a generalized model formulation
which encompasses both high and low turbulence
Reynolds number regions of the flow for arbitrary
values of AT/T,, and wall orientation. Following this
approach it is possible to compute detailed variations
for temperature and velocity in the buoyant sublayer,
from which (it will be shown) corresponding power-law
relations can be derived.

2. NUMERICAL PROCEDURE

2.1. Mean transport equations and auxiliary relations
The starting point for the turbulence modeling effort
is the system of transport equations given in LeQuere et
al.[30]for variable physical property flows. The fluid of
interest here, air, is presumed to be a perfect gas with
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Pr = 0.71. Conservation equations for mass, momen-
tum and energy, and a mean equation of state, are ob-
tained by Reynolds decomposition of instantaneous
quantities in the equations into the sum of the
mean and fluctuating parts and averaging the result
as shown in Appendix A of Humphrey et al. {31].
The result, ignoring fluctuations of physical properties
except density, is:

ap i
at 5%, — (P +PU) 2
Gt i)+ 2 P+ P
3 pu; o, Ul (P )+5 ‘(P AT
__a_+( ) ?l+ au Fo ot
- ox p Px)git+ 6X X, — puu;
3
& e —— (3 T ——
_‘__'T " 7 KT T A s
axj(pu, +pu; T+ p' T i) 6xj<Cp 3, pulT)
@
pT+pT =po T, )

An additional pair of useful relations can be obtained
from the equation of state. They are:

pUuT+puT =0 (6

PTT+pT?=0. %)

Through these auxiliary relations ' p'u;and p o'T' canbe
calculated using the models employed to approxi-
mate pu{T’ and pT'?, respectively.

To close the above system of equations, assumptions
i pUT'
and pT'? must be made, or expressions for these
quantities must be obtained from their respective
transport equations. The former approach introduces
the concept of a turbulent viscosity which is determined
by k, the kinetic energy of-turbulence and e, its rate of
isotropic dissipation. This model is commonly referred
to as the k—s model (KEM). The latter approach, in the
case of 2-D flow, involves six partial differential
equations for the turbulence correlations. Truncation
of these transport equations, obtained by neglecting
convection and diffusion terms, yields a system of
algebraic equations relating the turbulent fluxes to
known or calculable flow guantities; hence the
terminology, algebraic stress model (ASM).

From here on, third and higher order correlations
involving p’ are neglected. This is done principally
because at the present time there is insufficient
information for developing good approximations for
such terms. However, the omission of these terms is not
expected to alter significantly the mean flow results.
Theeffect of their omission onthe calculated turbulence
quantities is more difficult to ascertain but is also
expected to be small.

concerning the mean flow dependence of puju
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2.2. Two-equation model (KEM)
Maintaining an analogy with laminar flow, the

turbulent fluxes puju; and pu;T’ are assumed to obey
gradient type relations as follows,

J— om;, oa;\ 2
—puju; = #:<—u + ‘E‘J‘) - gﬁk d;; ®

@xj axi
= e 0T
— T = e e,
Pt Prt axi (9)

The turbulence viscosity, g, is assumed to be
proportional to a turbulence velocity scale and a
turbulence length scale. In the limit of high Reynolds
number, Jones and Launder [18] propose

2
b= Cop—. (10)
Inthisexpression C,, is a proportionality constantand &
is defined as

6u, ou;

e=vD = .
T, Bx,

(11

Exact transport equations for k and Dt can be
derived from the momentum equation as shown in ref,
[31]. Simplified forms of the equations, obtained by
neglecting third and higher order correlations
involving p', correlations involving du;/0x; and dp/dx;,
and variable viscosity property terms, are the basis for
the model presented in detail in ref. [31].

In the model, a gradient assumption is used to
approximate the diffusion of k and ¢ [18,32], with the
pressure contribution to turbulent diffusion assumed to
be negligibly small as argued in ref. [33]. The
generation of D by stretching of vortex filaments and its
destruction through viscous reduction of velocity
gradients are modeled collectively as in ref. [34]. The
buoyancy term in the D equation is approximated as

op' dwp D - —
2o o—g = }‘Ceap u;g; (12)
‘When using the Boussinesq approximation, the RHS of
equation (12) yields an expression commonly used in
buoyant flows ; see, for example, the review by Kumar
[35]. The final forms of the modeled equations are,

7 o\ ok
0x; [(u * o k) 53‘;]

a ou;
+P+G—puD—p'u (“+uk “‘) (13)
0 0y,

é _ J
E(pk)Jr a(pujk) =

tFor incompressible turbulent flow, the D equation
automatically implies an equation for & However, with v
variable, it is more convenient to solve the D equation first and
then multiply the result by v to obtain e.
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i £ #AD)

b ébD
- + + —{C,sP—C uD
6x-[(p a)ﬁxj] (Ca 22#D)

D oil; ou;
+kca3G % a3pu(at+k6 ) (14)

~(pD)+

where : G and P are the buoyancy and shear production
of turbulent kinetic energy, respectively (see
Nomenclature); o, and o, are the Prandtl numbersfor k
and ¢ which, like C,,, C,, and C,,, are model constants.

In low turbulence flow, due, for example, to the
presence of a wall or damping of the turbulent
fluctuations by stable stratification, it is necessary to
modify equation (14). The standard forced flow
modification developed by Jones and Launder [18],
subsequently used to predict turbulent free convection
from a heated, vertical plate by Plumb and Kennedy
[19] and Lin and Churchill [20], requires the inclusion
of an extraneous term, — 2v(2k'/2/3y)?, in the turbulent
kineticenergyequationinordertobeabletosete = Oat
the wall. In this study such an empirical approach is
avoided because ¢ is not zero at the wall and, although
— 2v(0k''?/8y)? is an adequate expression for ¢ in the
near-wall region, it may be inappropriate in the bulk of
the flow. Instead, ¢ at the wallis obtained by considering
the balance of k in the viscous sublayer. In this region
the k-equation is simply an expression equating viscous
diffusion to dissipation of k

0 ok
—(pu=)=ub.
6xj(”6xj) K

The proof of equation (15) can be established by
expanding fluctuating quantities in (13} in terms of
Taylor series expansions in y, the distance per-
pendicular to the wall. Using a Taylor series expansion
in y for k2, it also follows that

okir2
kl/l;:( 6}, ) ' SR

with k at the wall taken as zero. The value of D at the
wall is readily obtained by substituting the above result

into equation (15)
ak12\2
D= 2( % )w.

There is ample evidence supporting the above
arguments. First, k ~ y? as y — 0 has been observed
experimentally by Schubauer [36]; second, molecular
diffusion of k balancing dissipation as y — 0 has been
observed to be a correct description of the turbulence
energy budget by, for example, Laufer [37] ;and third, ¢
-+ copstant as y — 0 is physically correct (see [387]).

Jonesand Launder [18] also added anarbitrary term
to the D-equation to obtain better agreement with
experimental results of the turbulent kinetic energy in
forced flow. Such a term is removed here because it
cannot be justified in purely buoyant flow. This term

(15)

(16)

)
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was also dropped by Plumb and Kennedy [19] but was
retained by Lin and Churchill [20].

Inagreement with Jones and Launder [18] and Lam
and Bremhorst [39], in this study C, and C,, are made
functions of Re,, the turbulence Reynolds number, in
order to account for low Reynolds number effects on
the flow. The variation of C, is determined by requiring
that the turbulence viscosity vary according to the Van
Driest formulation in the near-wall region. The
variation of C,; is chosen so that the model will predict
correctly the decay ofisotropic grid turbulence for both
high and low turbulence intensities. The modified
parameters are,

C,=C, exp [~2.5/(1+Re/50)]  (18a)
C,; = C,3,[1—03 exp (—Re})]1fi(Re) (18b)

where C,, and C,,, are constants optimized for high
Reynolds number flows. In equation (18b) f, =
1—exp (— Re,) is a wall-damping factor applied
between y* = 0 and 5 only. This is in order to comply
with the requirements of a low Reynolds number
formulation while simultaneously satisfying the con-
dition that the third term on the RHS of equation
(14) remain finite at the wall. Equation (18b) represents
a compromise between the proposals in refs. [38] and
[391.

In summary, the general Reynolds number form of
the D-equation proposed here is equation (14} with C,,
C,, and g, given by (18a), (18b) and (10), respectively.
Since there are no low Reynolds number modifications
for the k equation, equation (13) is employed for both
high and low Re, flows. The boundary conditions for k
and D at the wall, consistent with these equations, are

k,=0

5&112 2
D,=2 .
" ( dy )w

Finally, a relation for T'Z is also required in order to
obtain p_’T—’ from equation (7). The exact transport
equation for T2 is giveninref. [31]. Following Gibson
and Launder [26], the assumption of a local
equilibrium flow simplifies that equation to:

(19)

T T aT —
2T o =2 20 O Y s

ox; C, dx; 0x; 20

where the second equality, involving the model
constant R, has been proposed by Launder [25].
Combining equations (7) and (20) yields the following
relation for p'T":

k o ,T,BT

w T ax,
Strictly speaking, equation (21) is only valid for high
Re, flows. It is used here since a satisfactory low Re,

approximation for the transport of T'> does not yet
exist. {Although we note that Plumb and Kennedy [ 19]

have modeled the -’ITz—equation for flows where the

pT =2R— 21)
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Boussinesq approximation applies, in a way similar to
how Jones and Launder [ 18] modeled the k-equation.
However, in addition to introducing an extra term in
the T'?-equation, their model required the definition
and optimization of three new constants.)

Equations (8)10), (13), (14) and (21) together with
the mean transport equations (2)—(6) constitute an
isotropic eddy viscosity model for calculating free (or
mixed) convection turbulent flows.

2.3. Algebraic stress model (ASM)
Equations governing the transport of the Reynolds

stresses uju;and heat fluxes u; T’ have been derived [31].
Simplified forms of the equations, obtained by
neglecting third and higher order correlations
involving p’, du;/0x; and the viscosity gradient terms,
are the basis for the model used here. Apart from the
production terms which are known exactly, the terms

affecting the balances of uu w;and y; T’ involve unknown
correlations of fluctuating quantities. The modeling of
these terms follows from the work of Launder and his
colleagues [25-27] and is carefully outlined in ref. [31]

In modeling the pressure redistribution of u/«, and

u;T’, contributions due to fluctuating veloc1t1es and
temperature (and their interactions), the mean strain
(and its interactions with fluctuating velocities and
temperature), buoyancy and wall damping effects are
all considered. To render algebraic the complex system
of differential equations for the turbulent fluxes, the
assumption of a local equilibrium flow is invoked [40].
Although this assumption is incorrect for a low
Reynolds number flow or in the proximity of a solid
wall, KEM calculations show that, except in a viscous
region very close to the wall, the turbulence Reynolds
number is of the order of 102 to 10°. Given this rapid
tendency of the flow to acquire a high turbulence
Reynolds number, the applicability (or not) to free
convection of an ASM formulation premised on the
local equilibrium assumption is perhaps better judged
by the level of agreement found between measurements
and predictions. Thus, assuming local equilibrium, the

algebraic expressions resulting for uju; and u;T" are,

0= Py+G,+m,— iw[u — 16+ 2 f; k] (22)

—— 0T
0 = —puju;— i 0%, +P1T+p Tg;+m;r. (23)
In the above expressions, f, = 1/(1+ Re,/10) is a low

Reynolds number correction to the stress dissipation;
m;; and 7, denote the pressure redistribution terms;
and the following production terms due to shear and
buoyant forces are defined

(24)

(25)
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G =p utg]+p ngl (26)

The n;; and m;; terms are complicated functions of k, D,
wu, wI', P, G, P,], ;; and P;;. They involve the
spe01ﬁcatlon of various model constants and of a
function, f(I/y), to reduce the effect of the wall pressure
corrections with increasing distance from the wall. The
forms of these terms and of equations (22) and (23) for
the case of flow along a heated, vertical, flat plate are
given in detail in ref. [31].

Since k and D appear explicitly in the ASM
formulation, they must also be calculated. Although k

could be approximated from ASM calculations of uju;,
in practice it is more convenientt to calculate k directly
from its own transport equation and to determine two
of the normal stresses via the ASM formulation. The
third normal stress is evaluated as

WP =2k—Y u?.

i#j

@7

As before, the turbulent diffusion of k and D by pressure
fluctuations are neglected but the triple velocity
correlations are modeled according to refs. [33] and

[41]:
d _ ,uu _ 0 , k _ﬁak
E)Z( pU;—- 2 >_ax1<c — P Ja ) (28)

0 ou; ou; 0 k —3dD
— A — & 1 t — C Al ——— K 2
axj< P axe 6xk) axj< vD Py ) 29)
In flows that are two-dimensional in the mean,
equations (20), (22) and (23) represent a system of six

w2, 02y L,UT v v
and 77 as unknowns. Together with the equations for

k, D, p'T’" (of the previous section) and the mean
transport equations, the system is closed. In this study

w2 is evaluated by subtracting ASM-calculated values

algebraic equations constaining u'?

of u? and v'? from values of k calculated from its own
transport equation.

Values for the required model constants were taken
from refs. [25], [28] and [30]. The values used are:

R C C, C, Cpu, Ciy Pr, C,y o o,
0.8 024 0.15 1.44 192 144 09 009 1 13.
(30)

In addition, constants which appear in the modelfor the
pressure redistribution terms must be specified. They
are listed in ref. [31] where it is explained that three of
the wall correction terms are nullified by the zero values
of the constants. This state of affairs is due to a lack of
appropriate experimental data from which to derive
accurate values for these three constants. Although part
of the inaccuracies in the present study may be due to
the neglect of these terms, we have deliberately avoided

+1It is also physically more realistic to determine k from a
transport equation which retains the contributions of
convection and diffusion to its overall balance.
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attempting to obtain new estimates of any of the
constants by seeking an improved agreement between
measurements and predictions. Such an exercise must
await the availability of an accurately determined and
sufficiently extensive data base,

2.4. Boundary conditions and related considerations

The boundary conditions for the heated, vertical, flat
plate flow are shown in Fig. 1. Since the governing
equations solved here are fully elliptic, boundary
conditions are needed along the solid wall and the three
‘free’ boundaries of the calculation domain.

There is no need to specify boundary conditions for
the temperature fluctuations, T'?, since in both the
KEM and ASM models this variable is evaluated
algebraically. For the same reason, boundary
conditions are not required in the ASM formulation for
the turbulent stresses and heat fluxes.

(i) The solid wall. In forced convection, law-of-the-
wall relations for velocity and temperature are
frequently used to bridge the gap between the wall and
the inertial region in the flow. This empirical practice
saves considerable computing time and storage, but its
extension to natural and mixed convection flows is

‘6:?:0 Rl
k=0 T
2
D =2(5k212
dy ‘w

Tw

— —— — " S—
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questionable since, in general, it is not known what are
the correct relations to apply. In principle, one could
use power-law relations for velocity and temperature of
the form derived by George and Capp [29] for the
buoyant sublayer region of a heated, vertical, flat
plate, but the constants in the relation for velocity are
not known accurately, even at low AT/T , (see Section
1.2). Thus it would seem that refining the calculation
mesh and predicting the details of the flow all the way
to the wall is the most assured alternative.

The present procedure requires specifying the value
of the dissipation of turbulent kinetic energy at the wall.
Using the low Reynolds number model of Jones and
Launder [18], Plumb and Kennedy [19] and Lin and
Churchill [20] carried their calculations all the way
into the viscous sublayer while imposing a zero value
for dissipation at the wall. As a result, their calculated
‘dissipation’ cannot be viewed as a true isotropic
dissipation (see [42]). This difficulty can be overcome
by evaluating the wall dissipation from the simplified
form of the turbulent kineticenergy equationin the wall
region: see¢ equations (15}(17). This condition for
dissipation together with no slip impermeable wall
conditions for velocity and a constant wall temperature

0
i
I
|
I
|
f
|
i
i
i
1
I
] 3 [
—ftuvTkD]=0
: ey ]
l
i
{
{
i
|
i
I
I k specified
: D estimated from equation (34)
l
|
! 3
| —{ u,v, T ] =0
rw
[
i
i
J

U, vand ?speciﬁed from Ostrach’s solution

F1G. 1. Boundary conditions for heated, vertical, flat plate flow.
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are summarized below:

=0
T=T,
(31
k=0

aklﬂ 2
D=2 .
( oy )w

An estimate of the thickness of the viscous sublayer
region in free convection is needed to maintain the
necessary grid refinement in the numerical calculations.
This can be derived from the correlation obtained by
George and Capp [29] who find

Y
Hr nr

where 1 is the inner region flow length scale. Using the
LDV measurements in Cheesewright and Ierokipiotis
[6] to estimate p. and n, y* is found to be
approximately 4. During the course of calculation, the
grid refinement is continuously checked against this
criterion.

(ii) The far field (free boundaries). The free boundary
conditions used are shown in Fig. 1. Velocity and
temperature distributions along the upstream boun-
dary werespecified by imposing Ostrach’s [43} laminar
flow solution at a distance of 0.05 m from the leading
edge of the plate. Zero normal gradient conditions were
imposed for all varaibles on the downstream and side
boundaries. The side boundary was placed ata distance
from the plate equal to 3.5 times the boundary-layer
thickness at the end of the place.

To initiate the turbulence calculations, a small
amount of kinetic energy of turbulence (6 x 10™* m?
s~ %) was introduced at the experimentally observed
transition points (Gr, = 2x 10° for AT = 56 K and
Gr, = 1.5x10® for AT = 404 K). The corresponding
value of dissipation was then estimated from an
approximate balance between shearing production
and rate of dissipation. Thus, using the boundary-layer
approximation,

17~ (32)

oi

pu'v — ~ ubD (33)
dy
and equations (8) and (10} yield
Cl? _og
D ~—t—pk—. (34)
w ooy

Equations for the turbulence variables were solved
numerically in the computational subdomain bounded
by the transition plane, the downstream boundary, the
wall and far-side free boundary. The remaining
variables were computed throughout the entire
computational domain.

2.5. Numerical solution

(i) Methodology. The REBUFFS code developed by
LeQuere et al. [307 was extended to include the KEM
and ASM turbulence model formulations described

above. In REBUFFS, a control volume approach is
adopted for obtaining finite-difference forms of the
differential transport equations and their correspond-
ing boundary conditions. This has been amply
discussed in refs. [30] and [44]. Exactly the same
approach is used to derive the additional difference
equations required here for k, D and the turbulent
fluxes. The final forms of the difference equations apply
to variable physical property (temperature dependent)
flows. Note that boundary-layer simplifications are not
used in formulating the difference equations since these
are needed in elliptic form for calculating recirculating
flows in cavities (the subject of Part II of this work).

The methodology for performing the numerical
calculations is described in ref, [30]. This involves an
under-relaxed iteration sequence using an algorithm
that is implicit in time. The extension to turbulent flow
was achieved by introducing the calculation of k and D
{followed by the calculation of the turbulent fluxes
when using the ASM model} into the iteration
sequence. No difficulties were experienced in obtaining
steady-state results even when using very large time
steps.

All calculations were performed using a hybrid
upwind-central differencing scheme [447. Special care
was taken to establish the number and distribution of
grid nodes required to generate essentially grid-
independent results. A nonuniform grid consisting of 52
nodesin the streamwise direction, x,and 47 nodesin the
cross-stream direction, y, was used. The cross-stream
distribution of nodes was fixed by locating the first five
nodes within the viscous sublayer (y* <4} and
expanding the rest of the grid from the wall using a
factor of 6/5. The distribution of nodes in the
streamwise direction was such that about nine nodes
were contained in the laminar region, 17 nodes were in
the transition region and 24 nodes were in the fully
turbulent region. This partitioning of streamwise grid
nodes depended onthe value of AT = T, — T, since, for
a fixed plate length L, the x-position for transition to
turbulence was dictated by AT. Relative to calculations
performed on a 52 x 36 grid, the 52 x 47 grid yielded a
0.4%; change in total heat transfer and a 0.19; change in
the maximum velocity.

The calculations were performed on the CDC 7600
machine at the Lawrence Berkeley Laboratory. KEM
calculations using the finest grid required 265K octal
words of computer storage and 0.5 s per iteration.
About 500 iterations were necessary to obtain
converged results. For the same grid, the convergence
of ASM calculations was slower due to the additional
iterations needed for solving the turbulent fluxes. The
ASM calculations required 280K octal words of
storage and 1.2 s per iteration. About 850 iterations
were necessary to obtain converged results. Although
substantial reductions in ASM computational times
could be obtained by using converged KEM results as
starting conditions, it was decided to conduct
independent calculations in order to avoid any possible
bias in the ASM results.
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The convergence criterion was that the relative
change of values of the variables between consecutive
iterations at a critically located monitoring point
should be less than 10™* while simultaneously
requiring that the respective sums of the absolute
residual sources of mass, momentum, thermal energy,
kinetic energy of turbulence and its rate of dissipation
should all be less than 10~ 3.

(ii) Testing. Various purely numerical aspects of the
turbulent versions of the REBUFFS code were tested
by calculating laminar free convection along a heated,
vertical, flat plate. Excellent agreement was obtained
with Ostrach’s [43] analytical solution, both for the
Nusselt number and the temperature and velocity
profiles. The calculations were performed using a
nonuniform grid of 27 nodes in the cross-stream
direction and 20 nodes in the streamwise direction.
The plate length was 0.5 m which, with AT =
T.— T, = 349-293 = 56 K, corresponds to a Grashof
number of 1.1x10° and an overheat ratio of
AT/T, =0.19.

3. RESULTS AND DISCUSSION

3.1. Preliminary considerations

The production/destruction of turbulent kinetic
energy due to buoyancy-driven flow along a heated,
vertical, flat plate is —p’u’g. Under the gradient
assumption in the k-¢ model this quantity is
proportional to —87T/dx and, as a result, represents a
destruction, albeit small, of turbulent kinetic energy.
This contrasts with what should be expected from

simple considerations of the term — p’u'g, since one
would anticipate a negative value of p’ to correlate with
a positive value of u’ on average. Therefore, the term
— p'u'g represents a production term, as opposed to a
destruction term, in the balance of k. Because of
the inconsistency arising as a result of assuming
p'u'g = 0T/0x, Mason and Seban [15] and Lin and
Churchill [20] assumed that p'u’ g is proportional to the
transverse temperature gradient,
o 1w 0T

ug=-———g.
Py T Pr, 6yg

(33)

No justification, other than the fact that the correct
sense of contribution to k is now preserved, was given
for this modified form of the gradient assumption.
Nevertheless, these authors found that, at least for air,
this contribution to k had a negligible effect on their
numerical solutions and they therefore dropped the
buoyancy term from the k-equation altogether. Plumb
and Kennedy [19] assumed that p'u’ ~ \/(T'?k), but
the constant of proportionality obtained by them is not
universal. This is because the constant is of fixed sign
and magnitude, and is specific to heated, vertical, flat
plate flow. In fact, their assumption is not readily
generalized to arbitrary stratified flows.

KEM test results from this study showed that

whether p'u’ ~ 8T /dy or zero the effect on calculations
of heat transfer, mean temperature and velocity is
negligible. However, the turbulent kinetic energy
maximum is decreased by 7% if buoyancy is neglected.
Estimates of the shearing production and buoyancy
production/destruction of k (shown in Fig. 10) can be
obtained from the measurements by Miyamoto et al.
[8]. These results show that buoyancy production is
relatively small, compared to shearing production,
everywhere except in the vicinity of the velocity
maximum, and towards the edge of the boundary layer
where both contributions to k are small. The
measurements also indicate that buoyancy production
is negative, but small, in the viscous sublayer, which
probably explains the insensitivity of calculated heat
transfer results to the buoyant production of k.

As a result of the above, and in keeping with similar
turbulence model approaches [15, 20], direct buoyant
contributions to the balance of k and e, the terms
containing G in equations (13) and (14), have been
neglected in the present vertical flat plate KEM
calculations. This modeling difficulty does not arise in
the ASM formulation since p'w’ is computed from
equation (6) using an algebraic expression for u'T".

While the turbulent Prandtl number, Pr,, does not
arise in the ASM formulation, it is a critical parameter
in the KEM formulation for it controls the heat
transfer. For example, calculations showed that
changing Pr from 0.9 to 0.5 causes a reduction of 23%; in
the heat transfer. One can always refine Pr, in accord
with the experimental data as was done by, for example,
Mason and Seban [15] and Plumb and Kennedy [19].
The former used a step function and the latter used a
smooth function of y/é (§ being the boundary-layer
thickness). A constant value of 0.9 was used in the
present KEM formulation as was used by Lin and
Churchill [20]. A comparison between present KEM
heat transfer results and the predictions of refs. [15] and
[19] using variable turbulent Prandtl number
formulations showed insignificant differences. Further
discussion concerning the variation of Pr, with distance
from the wall is provided below.

The results predicted by the KEM and ASM
formulations are presented in the following subsec-
tions. The results are compared to experimental data
and earlier calculations wherever possible.

(i) Heat transfer. Heat transfer results are shown in
Fig. 2in the form of plots of Nu, vs Gr,. The correlation
forlow AT from Siebers et al. [10] represents the best fit
to alllow AT experimental measurements performed to
date. The integral analysis results of Eckert and
Jackson [11], Bayley [12], and the k-¢ model
calculations by Plumb and Kennedy [19] and Lin and
Churchill [20] are in close agreement but fall above the
best fit for low AT Corresponding k- model
predictions by Mason and Seban [15] fall below the
best fit for data at low AT and exactly on the best fit for
the data at high AT. However, because their model is
premised on the applicability of the Boussinesq
approximation the latter agreement is not especially
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F1G. 2. Comparison between present KEM and ASM predictions of heated, vertical, flat plate, free convection

flow and earlier calculations and measurements. Points refer to conditions actually predicted (KEM and

ASM) or to interpolations from the numerical calculations of others. Dashed lines represent integral analysis

results. Continuous lines are best fits to experimental data obtained by Siebers et al. [10]. Vertical bar denotes
uncertainty bounds on data measured by Siebers et al. [10].

meaningful. Present ASM predictions for low AT show
only a slight improvement over the KEM results. By
contrast, at high AT the ASM predictions are in closer
relative agreement with the high AT measurements of
ref. [10]. Given the level of experimental uncertainty
present in the measurements at both high and low AT,
shown as a vertical bar in the figure, we must conclude
that, in so far as the calculation of heat transfer from
vertical flat plates is concerned, it would appear that the
ASM is only marginally superior to the KEM.

Figure 3 provides a more detailed comparison
between ASM-calculated Nu, and the experimental
correlations of ref. [10] as a function of Gr,. The
transition point to turbulent flow at high AT was taken
as Gr, = 1.5 x 108, as observed in ref. [10]. However,
numerical tests showed that the fully turbulent
variation of Nu, with Gr, was ultimately independent
of the choice of transition location. A similar
observation has been made for low AT [15]. In the
laminar flow regime the calculations are in very good
agreement with the measurements and follow the Gr!/*
dependence. Calculations in the turbulent flow regime
follow closely the Grl/® dependence and agree with the
measurements to within experimental error.

(i) Mean velocity and temperature. Predicted and
measured streamwise velocity and temperature profiles

are shown in Fig. 4 for low AT as a function of the
nondimensional transverse coordinate, { = yNu,/x.
The measurements of velocity correspond to separate
experiments performed by Cheesewright [5] (using a
hot wire) and by Cheesewright and Ierokipiotis [6]
(using a laser—Doppler velocimeter). Both sets of data
are shown here since the first measurements were the
target for the predictions of Mason and Seban [15] and
Plumb and Kennedy [19]. Subsequently it has been
shown (see [6]) that the first measurements are in error
and that the second are to be preferred. The latter have
been the target for our study. The measurements for
temperature correspond to constant wall temperature
[5] and constant heat flux [8] boundary conditions,
respectively. The close agreement between these two
sets of data is attributed to having used the same
characteristic length scale for correlating the results.
All the predictions of velocity are in reasonable
agreement with the LDV measurements in ref. [6].
However, only the present KEM and ASM predictions
are consistently good for all values of the transverse
coordinate. Of these two, the ASM model yields a
slightly better picture of the velocity component far-
field behavior. Similar levels of agreement between
measurements and predictions of temperature are
obtained by Mason and Seban [15] and the present
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FiG. 3. Measured (best fit lines) and ASM-predicted (points) variation of Nu, vs Gr, for the free convection flow
along a heated, vertical, flat plate. Gr, values for triggering transition and transition ranges are indicated.

KEM and ASM model formulations. But as before,
only the KEM and ASM results are consistently good
for all values of {. The k—¢ model predictions of Plumb
and Kennedy [19] shows especially large discrepancies
at intermediate values of {.

(iii) Turbulence quantities. Measured and ASM-
calculated turbulent stresses and heat fluxes are shown
in Figs. 5 and 6. The experimental velocity data
were obtained using a laser—Doppler velocimeter.
Temperature was measured using fine thermocouples.
Although critical uncertainty analyses are not provided
in refs. [6] or [8], Humpbhrey et al. [1] show that mean
velocities in free convection flows can be determined
fairly accurately using the LDV technique. However,
the fluctuating components of motion are prone to
large uncertainties. These are due, mainly, to
inhomogeneous particle seeding and inhomogeneous
refractive index effects or ‘beam dancing’. Therefore,
while we view the present comparisons as being of great
importance for validating qualitative aspects of the
ASM model, a quantitative optimization of the modelis
unjustified until definitive measurements of relevant
turbulence quantities are available for this purpose.

The calculated streamwise component of turbulence
intensity in Fig. 5, corresponding to low AT, shows an
interesting variation. Between { = 0.5 and 2 the rapid

increase in (u'?)"/%/ii,, is suddenly halted at a value of
about 0.19. Since the calculated velocity maximum

peaks at { = 1.8 (Fig. 9) and ur goes through zero at
about { = 1.5 (Fig. 6), for low AT the shearing
production of u'2, equation (24), is minimized between

{ = 1.5 and 1.8 approximately. (In point of fact this is
a region of small ‘negative’ production.) Similarly, the

buoyancy production of this component [equation
(26)] is also small in this region. This can be shown by
substitution of equation (6} in (26) and noting from Fig.
6 that the calculated w' T, for low AT, goes through zero
at about { = 1.4. Although there are discrepancies
between the calculations and measurements for
WY/, the experimental data also show a
temporary halting in the growth of this component
when it reaches a value of about 0.21.

It seems reasonable to assume that, with the shear

and buoyancy production of u? suppressed, pressure
redistribution of energy from this component to v and

w2 should work to further reduce the value of 2. The
anisotropic influence of wall damping should be

expected to favor energy transfer to w'? over v and, in

fact, Fig. S5shows that w2is considerably larger than v?
in the near-wall region of the flow. Further away from
the wall, shearing and buoyant production once again

increase the level of «2. Reduced wall-damping of v?
allows this component to increase through pressure-

redistribution of energy. By contrast, the w’
component decreases markedly in the outer flow region
for which there is no immediately obvious explanation.
However, we note that this component is found from
w? = 2k—(u'? +v'?), where u'? and v'? are calculated
from algebraic relations obtained by neglecting
convection and diffusion in the respective stress
transport equations. The profiles in Fig. 10 (discussed
below) show that convection and turbulent diffusion
significantly affect the balance of k. In particular,
turbulent diffusion works to transport k from the
outer flow to the near wall region. As a result, the
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FiG. 4. Measured (points) and predicted (lines) of streamwise velocity, temperature and temperature
fluctuation profiles in the turbulent region of free convection flow along a heated, vertical, flat plate at low AT.

ASM-calculated values of w2 and v'? are somewhat
overestimated while values for w'? are underestimated

in the outer flow region. Assuming that v'? has been
calculated correctly (see Fig. 5) the amount by which the

ASM-calculated value of w? should be adjusted is
approximately the difference between the measured

and calculated values of w2. Thus, the near-wall peak
value of w2 would be slightly reduced while the outer-

flow region values would be substantially increased.

Predictions of the turbulent shear stress, W, and of
the heat fluxes, wT and v'T’, are shown as
appropriately normalized quantities in Fig. 6 for AT
=56 K and AT =404 K. The results are in good

qualitative agreement with the measurements. In
particular, the experimentally observed regions of

negativeu'v’ and u' T” are resolved numerically, and it is
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FiG. 5. Measured (points) and predicted (lines) normal
components of turbulent stress in free convection flow alonga
heated, vertical, flat plate at low AT

clear from the calculations that the positions of zero
shear stress and zero transverse gradient of the
streamwise velocity component do not coincide. The
rather large absolute differences between profiles
computed for AT = 56 K and 404 K are due to the
temperature-dependent factors used for normalization.
It is clear from the plots that the shape of the profiles for
the turbulent fluxes are essentially independent of
variations in AT. The systematic overprediction of the
turbulent fluxes of momentum and heat in the near-wall
region is partly due to the neglect of convection and
diffusion in the models for these variables. It is
interesting to note that because u'T’ < 0 very near the
wall ({ < 1.4 for AT = 56 K), equation (6) gives p'u’ > 0.
As a consequence, term G in equation (13) for & is
negative, which implies a damping of turbulent kinetic
energy in this region due to buoyant effects ; see also Fig.
10 discussed further below.

Measurements and calculations of the temperature
fluctuations, T'2, are provided in Fig. 4. Of the three
calculations shown, the ASM prediction comes nearest
to matching the magnitude of 7'? near the wall while
the KEM does a slightly better job of predicting its
location. These near-wall differences are attributed to
the way u;T" is evaluated in each case. Both models

overpredict the far field values of T"2. Neither of the

near-wall features (magnitude/location) is well pre-
dicted by ref, [19]. Assuming that the measurements
are correct, we can only conclude that the present
model for W, equation (20), is superior.

From the ASM calculations it is possible to obtain
the quantity

— o O1/0y

Pry=[(v)/v T)]aT/é;_z =f©)
for both high andlow AT. The results are shownin Fig. 7
together with estimates of Pr, obtained from the free
convection data of Miyamoto et al. [§]. Unfortunately,
the experiments were not performed for identical
conditions. Thus the bars in the figure compound
variations between experiments with uncertainties
within experiments. Notwithstanding, the trend in the
data supports the calculated variation of Pr, with
distance from the wall. The calculated distributions
peak between the locations of maximum shear stress
and maximum velocity and show a relatively
pronounced dependence on temperature. Noting that
a value of { =6 corresponds to a y+ =115, ap-
proximately, present results show Pr, decreasing
between y* ~ 115 and the wall. This contrasts with the
variation known to arise in forced convection air flows
(see, for example, [45]) where Pr, increases from about 1
to2asy* decreases from 60 to 10. It is seen from Fig. 7
that a constant value of Pr,=09 for the KEM
calculations is a reasonable choice.

(iv) Near-wall results. The near-wall results need
further discussion since this is where the resultant
flow and heat transfer are controlled. Attempts to
plot velocity distributions in terms of wall variables
(u* vs y*) did not yield meaningful results. Although
the profiles showed regions in which the velocity
distributions could be approximated by logarithmic
functions, the functions required different values of the
Von Karman constant depending on the overheat ratio
and Grashof number.

A comparison using a 1/3 power law is shown in Fig.
8. Due to the large AT range considered numerically, a
film temperature, T; = (T, + T,)/2, has been used to
evaluate physical properties. The measurements are
reasonably well correlated by the 1/3 power law in the
buoyant sublayer, but with a displacement constant
and slope different from that proposed in [29]. (In all
fairness, it should be noted that the data available to
George and Capp [29] for determining the power law
constants was scanty and subject to unquantified
uncertainty.) The predictions show that the depen-
dence of the near-wall velocity distribution on
temperature is only moderate. The forms of the
calculated correlations are:

(36)

a y 1/3
o= 16.5 (—) —-99 (AT =56K) (37a)
T

nr

and

n y 1/3
— =165 <—> —11.3 (AT =404 K). (37b)
Ur,

Hre
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F1G. 7. Variation of Pr, with distance from the wall for free
convection along a heated, vertical, flat plate.

An attempt to obtain a single correlation valid for both
high and low AT using 77 = #{yu/Y X Tu/ T,p)° 14, as
suggested for temperature in ref. [10], proved
unsuccessful. Experimental data in the linear region,
(y/n)*? < 1.2 according to [29], are lacking and it is
not possible to judge quantitatively the accuracy of the
model calculations.

Near-wall measured and calculated temperature
profiles are compared in Fig. 8 with the analytical
formulations derived in ref. {29] for the viscous and
buoyant sublayer regions. Agreement between the
measurements of ref. [10] and present calculations is
very good, especially at AT =404 K. While the
temperature variation through the buoyant sublayer is
well approximated by the expression derived in ref.
[29], that obtained for the viscous region departs
significantly from both the measurements and
calculations. The temperature correlations calculated
numerically are:

y\~ 1
g= I.35(-—~> —027 (AT =56K) (38a)

fr

and

-1/3
8= 1.28(;;;—) —0.28 (AT =404 K). (38b)
T

These results show clearly that it is inappropriate to
use logarithmic relations, derived from considerations
of forced convection flow, as boundary conditions in
free convection flow for patching a wall with the fully
turbulent region. Instead, as suggested in ref. [29],a 1/3
power law appears to provide a good representation of
both velocity and temperature variations in the
buoyant sublayer region in free convection flow.
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(v) Overheat effects. Calculations were performed to
establish the influence of varying AT/T,, on turbulent
free convection along a heated, vertical, flat plate. Some
of the results obtained are shown in Fig. 9.

The mean velocity and temperature profiles reveal a
strong dependence on AT in the near-wall region of the
flow (between the wall and the velocity maximum). By
contrast, the outer region shows a stronger dependence
on Gr, than on AT. Given that 60% of the temperature
drop takes place between the wall and the velocity
maximum, the latter result is not too surprising. As AT
increases, the characteristic thermal spreading distance
of the boundary layer increases and, since the Prandtl
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number in this temperature range is constant, the
corresponding viscous spreading length must also
increase. The strong reduction in @/, with increasing
AT near the wall is attributed to the temperature
dependence of viscosity which, for air, increases as /T
This has the effect of increasing viscous forces relative to
buoyant forces in the near-wall region and slows down
the flow. The same variations with AT have been
observed experimentally and predicted theoretically in
the laminar flow study of Cairnie and Harrison [7].

Calculations of the turbulent kinetic energy and the
normal stress components, available in ref. [31], show
that increasing temperature has the effect of decreasing
the relative turbulence intensity of the three normal
stress components ; although the u'? component shows
a small increase in the near-wall region.

A comparison between measured and predicted

values of T2 shows good qualitative agreement. Near-

wall values of T2 are unpredicted while the outer flow
values are overpredicted. Thisis partly attributed to the

neglect of convection and diffusion in the model for T2,

Asfor k, turbulent diffusion is expected to transport 72
from the outer to the inner region of the flow, but this
has not been accounted for in the model.

The turbulent kinetic energy budget was calculated
for low and high AT. The low AT results are shown in
Fig. 10. The physical contributions to the balance of k
are identified in the figure. At high AT, the small region
of negative shearing production (located around the
velocity maximum) almost disappears. By contrast, the
region of viscous diffusion extends further from the
wall, although the relative magnitude of this effect is
smaller at high AT Aside from these differences, the
profiles for each term in the budget show similar
variations for both low and high AT.
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Everywhere, dissipation and convection represent
sinks in the balance of k. Near the wall the loss of &
through dissipation becomes very large where it is
balanced almost exclusively by shearing production.
Shearing production becomes very small near the
maximum velocity location and dissipation is now
balanced essentially by an influx of k through turbulent
diffusion from the near-wall and outer-flow regions. In
the far field, turbulent diffusion also works to transport
k away from the wall. In this region turbulent diffusion
and shearing production are essentially balanced by
dissipation and convection.

Except for aregion bounded roughly by y/é, = 0.075
and 0.3, buoyancy production is always less than
shearing production. Between y/d, = 0 and 0.075 the
buoyancy term is negative and works to dampen
turbulent fluctuations in the flow. Between y/é, =
0.075 and 0.3 the dissipation of k is approximately
balanced by the combined effects of buoyancy
production, shear production and turbulent diffusion.

4, CONCLUSIONS

Two low Reynolds number turbulence model
formulations have been developed for predicting wall-
bounded, variable property, free convection flows. The
KEM model relates turbulent fluxes to eddy viscosities
via a generalized Boussinesq hypothesis. The ASM
model calculates the turbulent fluxes from algebraic
expressions derived from simplified forms of transport
equations for the fluxes. For this, the main assumption
is that of an equilibrium turbulent flow. Both models
include wall-damping effects on turbulent transport.
For the KEM model this involves introducing
a turbulence Reynolds number dependence along

Shearing production
Buoyancy production

Miyamolo et al [8], Gry = 1x104, AT = 34°K

Shearing production
Buoyancy production
Dissipation
Convection

Viscous diffusion
Turbulent diffusion

X AN A
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1.5 20

y

by

F16. 10. Energy budget, normalized by (p,i3,/8,), for low AT (56 K) and Gr, = 5.6 x 10'°.
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the lines of a Van Driest formulation for turbulent
viscosity. In addition, the ASM model includes
pressure redistribution and wall-damping effects on the
transport of the turbulent fluxes.

Standard closure practices have been extended and
improved to accommodate the needs of the present
flow. These include retaining buoyancy production
terms in the turbulent kinetic energy and the turbulent
flux equations in the ASM formulation. The use of
additional auxiliary relations derived from the
equation of state, valid for air, facilitate the calculations
of high temperature flows which do not follow the
Boussinesq approximation. It has not been necessary
to introduce new model constants into the model
formulations. Values for the constants used have been
taken from the literature. Further optimization of the
constants must await the availability of more accurate
and extensive experimental data relating to turbulence
quantities.

Both models predict well the heat transfer and the
mean flow characteristics of a heated, vertical, flat
plate with the ASM model performing slightly better. In
addition, the ASM model yields predictions of the
anisotropic turbulence characteristics which are in
good qualitative agreement with available experi-
mental results. The discrepancies observed are possibly
due, at least in part, to the assumption of an equilibrium
flow, but the lack of an experimental uncertainty
analysis makes this difficult to quantify. Near-wall
computations support a y'/> dependence for velocity
and a y~ '3 dependence for temperature in the buoyant
sublayer. Values of the power law constants for
velocity and temperature (derived numerically) are
presented here for the first time.

Predictions of the budget for turbulent kinetic en-
ergy show that in the outer-flow region all terms in
the balance are of comparable magnitude. In the
neighborhood of the velocity maximum, dissipation is
balanced primarily by turbulent diffusion. Between this
maximum and the wall, the buoyancy production term
is negative and works to dampen turbulent fluctua-
tions. In this region dissipation is balanced primarily by
shearing production.
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SIMULATION NUMERIQUE D'UN ECOULEMENT TURBULENT LIBRE.
I-CONVECTION NATURELLE LE LONG D'UNE PLAQUE VERTICALE CHAUDE

Résumé—On développe deux modéles pour prédire la convection naturelle turbulente a faible nombre de
Reynolds. Ces modéles s’appliquent aussi & la convection mixte. Le premier, du type k—e, est basé sur la notion
de diffusivités turbulentes de la quantité de mouvement et de la chaleur. Le second, un modéle algébrique de
contrainte, est basé sur des approximations dérivées de flux turbulents anisotropes par une troncature
convenable de leurs équations de conservation. Les deux formulations s’appliquent aux écoulements a
propriétés variables avec des rapports élevés AT/ T, . Il n’y a pas d’adaptation des valeurs des constantes pour
obtenir un accord entre les mesures et les prévisions. Les formes elliptiques des équations de transport, avec
leurs conditions aux limites appropriées, sont résolues numériquement pour deux cas bidimensionnels. Le
premier correspond a la convection naturelle le long d’une plaque verticale chauffée et il fait 'objet de cet
article. Le second correspond a la convection dans une cavité chauffée, de section rectangulaire arbitraires et
d’orientation variable, étudié dans une seconde partie. Pour le premier cas, une comparaison entre les mesures
et les prédictions montre que les deux modéles donnent des résultats précis pqur I’écoulement moyen et le
transfert thermique. Les distributions pariétales de vitesse et de température révélent la loi puissance 1/3 de
George et Capp [Int. J. Heat Mass Transfer 22, 813-828 (1979)] et confirmée pour la température par Siebers
et al.[J. Heat Transfer 167,124-134 (1985)]. Les valeurs des constantes des lois puissances pour la vitesse et la
température sont obtenues numériquement pour AT/T,_, faible et grand. Les contraintes de Reynolds et les
distributions de flux de chaleur sont en bon accord qualitatif avec les mesures de Miyamoto et alii [ Proc. 7th
Int. Heat Transfer Conference, Vol. 2, pp. 323-328 (1982)]. En particulier le calcul révéle les régions de
production négative d’énergie cinétique observées expérimentalement.
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NUMERISCHE SIMULATION TURBULENTER AUFTRIEBSSTROMUNGEN—I.
FREIE KONVEKTION AN EINER BEHEIZTEN SENKRECHTEN PLATTE

Zusammenfassung—Zwei Modelle zur Berechnung der freien Konvektion in turbulenten Strémungen bei
kleinen Reynoldszahlen wurden entwickelt. Die Modelle konnen auch auf gemischte Konvektionsstrémun-
gen angewandt werden. Das erste, ein k, e-Modell, basiert auf den turbulenten TransportgréBen fiir Impuls
und Wirme. Das zweite Modell, ein algebraisches Spannungsmodell, basiert auf Ndherungsldsungen fiir die
anisotropen turbulenten Strome, die aus geeigneten Vereinfachungen der Erhaltungssitze gewonnen wurden.
Beide Formulierungen sind anwendbar auf Stromungen mit variablen FEigenschaften und hohen
Uberhitzungsverhiltnissen AT/T,, und bendtigen keine Definition neuer Modellkonstanten. Kein Versuch
wurde unternommen, die bekannten Werte fiir die Konstanten zu modifizieren, um die Ubereinstimmung
zwischen Messungen und Berechnungen der untersuchten Strémungen zu verbessern. Fiir eine solche
Optimierung muB die Verfiigbarkeit detaillierterer und zuverlissiger experimenteller Daten von turbulenten
GroBen abgewartet werden. Voll elliptische Formen der Differentialgleichungen fiir den Transport mit
geeigneten speziellen Randbedingungen werden numerisch fiir zwei zweidimensionale Konfigurationen
gelost. Die erste gilt fiir freie Konvektion ldngs einer beheizten senkrechten Platte und ist Gegenstand von Teil
I dieses Berichts. Die zweite gilt fiir freic und gemischte Konvektion von einer beheizten Vertiefung mit
beliebigem rechteckigem Querschnitt und variabler Oberfliche und ist Gegenstand von Teil II. Fiir den Fall
der senkrechten Platte zeigt ein Vergleich zwischen Messungen und Berechnungen, dal beide Modelle
ziemlich genaue Ergebnisse fiir die mittlere Stromungsgeschwindigkeit und den mittleren Wérmeiibergang
liefern. Wandnahe Geschwindigkeits- und Temperaturverteilungen, berechnet mit beiden Modellen, zeigen
die bekannte 1/3-Potenz Abhdngigkeit.

YUCJIEHHOE UCCJIEJOBAHHE NOABEMHOI'O TYPBYJIEHTHOI'O TEYEHHMA—I.
CBOBOIHASl KOHBEKIIMSI OKOJIO HATPETOY BEPTUKAJIbBHOM IJIOCKOM
IIJIACTUHBI

Amnorauns—IIpennoxens! ABe MOIEIN JIA pacyeTa CBOOOAHOKOHBEKTHBHBIX TYpOYICHTHBIX TeUECHHH
OpH Manbix Yuciaax PeifHonbACa, KOTOPbIE IPUMEHMME! TAKKE H K CMEIIAHHOKOHBEKTHBHBIM TEYCHHSAM.
Ilepsas, k-e-MOn€eb, OCHOBAHA HA NOHATHH TYpOYJIeHTHOH TEMIEPaTypPONpPOBOIHOCTH [UIA HMIYJIbCA ¥
Terna. Bropas, Monens anreOpasyeckoro HampskeHus, 6a3MpyeTcsi Ha AanIPOKCHMAlMAX COOTBET-
CTBYIOLIMX 3aKOHOB COXPaHEHHA IUIA AHU30TPONHBIX TypOyJIeHTHBIX noTokoB. O6e MOIETH NPUMEHHMBI
K TIOTOKaM € MEpeMEeHHbIMH XapaKTEPHCTHKaMH M OOJIBIUMMH OTHOLIEHHAMH neperpesa AT/T, u ne
Tpe6yroT BBEIEHHS HOBBIX MOCTOSHHBIX MoJeaH. [ToMbITOK yTOUHEHUA paHee MPEIJIOXEHHBIX 3HAUCHHH
NOCTOSIHHBIX [UIsl YJIYYLIEHHS COOTBETCTBHS MEXIY SKCINEPHMEHTAIbHBIMH H PacYeTHBIMH XapaKTepHc-
THKAMH HCC/IENyEMOTO TeYEeHHA He NpeanpHHHMAaIoch. Takoe yTOYHEHHe NOJDKHO ONMHpaThes Ha Goee
JIeTANbHBIE M HAJEXKHBIE 3KCIIEPHMEHTANBHBIE M3MEPEHHMs XapaKTepucTHK TypOynenTHocTH. IMosHble
3/UTMITHYECKHE ByMepHble U depeHunaIbHble YPABHEHHAS IIEPEHOCA C 3aaHHBIMH I'PaHHYHBIMH YCJI0-
BMSIMH PELICHbI YHCJIEHHO [UIf ABYX BHIOB TedeHmit. B I wacTu uccreayercs cpobomHas KOHBEKLHS Y
HarpeToil BepTHKa/IbHOM MIacTHHBL. Bo BTOpO# YacTH paccMaTpuBaercs cBoboaHas H CMEMIAHHAs KOH-
BEKIMA B HATPETOH [ONOCTH NPOU3BOIBLHOTO MPAMOYTOJIBHOIO CEYeHHs NPH Pa3IMYHOM ee OPHEHTALMH.
B 3T0M Cilydae cpaBHeHHMe NaHHBIX U3MEPEHHH C pe3yIbTaTaMH PacueToB IOKa3bIBaeT, 4To obe Moaenn
AOT JOBOJILHO TOYHBLIE 3HAYEHHs MHTErPAJIbHBIX XapaKTEPHCTHK TedeHHs U TemaoobMmeHa. Pacnpenene-
HHSl CKOPDOCTH H TEMIEPATYPBl ¥ CTEHKH, HalIeHHble NO O0EUM MOJENSM, JalOT CTENCHHYIO 3aBHCH-
MOCTb ¢ moka3saresieM 1/3, nonyuennyro [xopmxem n Kanmnom [Int. J. Heat Mass Transfer 22, 813-826
(1979)} u noaTeepxaennyto ans reMmnepatypsl Ceitbepcom u ap. [J. Heat Transfer 107, 124-136 (1985)].
3HayeHust MOCTOSHHBIX B CTENEHHBIX 3aBUCHMOCTSX JUIA CKOPOCTH H TEMIEPATYPhl NOJYYEHBl YHCICHHO
Ui GOJIbIUMX M Maklx 3HaveHuit AT/T, . PacueTsl aHM30TPONHOTIO peHOJILACOBA HANPSDKEHUA U paci-
penenennii TYpSyNIeHTHOrO TEILIOBOIO NOTOKA Ka4eCTBEHHO COOTBETCTBYIOT M3MEPEHHAMH MHAMOTO H
ap. [Proc. 7th Int. Heat Transfer Conference, Vol. 2, pp. 323-328 (1982)]. B 4acTHOCTH, C MOMOLIBIO
PacYeTOB TOYHO OMpeleNieHbl HaboaaeMble IKCIEPHMEHTAIBHO 06J1aCTH MPOU3BOACTBA TypOYyICHTHOM
KHHETHYECKOM 3HEPIrHH 3a CYET OTPHLATEILHOM MOXLEMHON CHIILI M CIABHTA.



